题解:用a[i]表<=i时有几种树满足度数要求,那么这样就可以递归了,a[i]=a[i-1]^n+1。n个节点每个有a[i-1]种情况,那么将其相乘,最后加上1,因为深度为0也算一种。那么答案就是a[n]-a[n-1]。然后就是高精度的问题了,发现很久没有现码高精度没手感了,连高进度加法进位都出了些问题,需要特别注意。

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
struct data{int len,a[2002];}a[35],c,p,t;
int n,d;
data mul(data a,data b){
memset(c.a,0,sizeof c.a);
for(int i=1;i<=a.len;i++)
for(int j=1;j<=b.len;j++){
c.a[i+j-1]+=a.a[i]*b.a[j];
c.a[i+j]+=c.a[i+j-1]/10000;
c.a[i+j-1]%=10000;
}c.len=2000;
while(c.len&&!c.a[c.len])c.len--;
return c;
}
data sum(data a,data b){
memset(c.a,0,sizeof c.a);
c.len=max(a.len,b.len);
for(int i=1;i<=c.len;i++){
c.a[i]+=a.a[i]+b.a[i];
c.a[i+1]+=c.a[i]/10000;
c.a[i]%=10000;
}c.len=2000;
while(c.len&&!c.a[c.len])c.len--;
return c;
}
data sub(data a,data b){
memset(c.a,0,sizeof c.a);
c.len=a.len;
for(int i=1;i<=a.len;i++){
c.a[i]=a.a[i]-b.a[i];
if(c.a[i]<0)c.a[i]+=10000,a.a[i+1]--;
}while(c.len&&!c.a[c.len])c.len--;
return c;
}
data power(data a,int b){
memset(p.a,0,sizeof p.a); p.len=1; p.a[1]=1;
while(b){
if(b&1)p=mul(p,a);
b>>=1; a=mul(a,a);
}return p;
}
data op(data a,int b){
t.len=1; t.a[1]=1;
return sum(power(a,b),t);
}
int main(){
scanf("%d%d",&n,&d);
if(!d)return puts("1"),0;
a[0].len=1; a[0].a[1]=1;
for(int i=1;i<=d;i++)a[i]=op(a[i-1],n);
a[d]=sub(a[d],a[d-1]);
printf("%d",a[d].a[a[d].len]);
for(int i=a[d].len-1;i;i--)printf("%04d",a[d].a[i]);
return 0;
}

BZOJ 1089 严格n元树 (递推+高精度)的更多相关文章

  1. [BZOJ1089][SCOI2003]严格n元树(递推+高精度)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1089 分析: 第一感觉可以用一个通式求出来,但是考虑一下很麻烦,不好搞的.很容易发现最 ...

  2. bzoj 1089 SCOI2003严格n元树 递推

    挺好想的,就是一直没调过,我也不知道哪儿的错,对拍也拍了,因为数据范围小,都快手动对拍了也不知道 哪儿错了.... 我们定义w[i]代表深度<=i的严格n元树的个数 那么最后w[d]-w[d-1 ...

  3. [BZOJ]1089 严格n元树(SCOI2003)

    十几年前的题啊……果然还处于高精度遍地走的年代.不过通过这道题,小C想mark一下n叉树计数的做法. Description 如果一棵树的所有非叶节点都恰好有n个儿子,那么我们称它为严格n元树.如果该 ...

  4. PKU 2506 Tiling(递推+高精度||string应用)

    题目大意:原题链接有2×1和2×2两种规格的地板,现要拼2×n的形状,共有多少种情况,首先要做这道题目要先对递推有一定的了解.解题思路:1.假设我们已经铺好了2×(n-1)的情形,则要铺到2×n则只能 ...

  5. 递推+高精度+找规律 UVA 10254 The Priest Mathematician

    题目传送门 /* 题意:汉诺塔问题变形,多了第四个盘子可以放前k个塔,然后n-k个是经典的汉诺塔问题,问最少操作次数 递推+高精度+找规律:f[k]表示前k放在第四个盘子,g[n-k]表示经典三个盘子 ...

  6. [luogu]P1066 2^k进制数[数学][递推][高精度]

    [luogu]P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻 ...

  7. 【BZOJ】1089: [SCOI2003]严格n元树(递推+高精度/fft)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1089 题意:求深度为d的n元树数目.(0<n<=32, 0<=d<=16) ...

  8. 【noi 2.6_9280】&【bzoj 1089】严格n元树(DP+高精度+重载运算符)

    题意:定义一棵树的所有非叶节点都恰好有n个儿子为严格n元树.问深度为d的严格n元树数目. 解法:f[i]表示深度为<=i的严格n元树数目.f[i]-f[i-1]表示深度为i的严格n元树数目.f[ ...

  9. bzoj 1089 [SCOI2003]严格n元树(DP+高精度)

    1089: [SCOI2003]严格n元树 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1250  Solved: 621[Submit][Statu ...

随机推荐

  1. ASP.NET MVC View向Controller传值方式总结

    1:QueryString传值1)也可以使用new{}来为form的action增加querystring2)在controler里使用Request.QueryString["word&q ...

  2. BZOJ 1297: [SCOI2009]迷路( dp + 矩阵快速幂 )

    递推式很明显...但是要做矩阵乘法就得拆点..我一开始很脑残地对于每一条权值v>1的边都新建v-1个节点去转移...然后就TLE了...把每个点拆成9个就可以了...时间复杂度O((9N)^3* ...

  3. linux杂记(十一)Bash Shell的使用环境

    Bash Shell使用环境 Bash Shell使用环境 1.登录讯息显示数据:/etc/issue,/etc/motd 我们在终端机接口(tty1~tty6)登入的时候,会有几行提示的字符串,那个 ...

  4. ORA-31626:作业不存在 ORA-31633:无法创建主表"XXX.SYS_IMPORT_FULL_05"

    错误代码: ORA-31626:作业不存在 ORA-31633:无法创建主表"XXX.SYS_IMPORT_FULL_05" ORA-06512:在"SYS.DBMS_S ...

  5. bzoj 1085: [SCOI2005]骑士精神 IDA*

    题目链接 给一个图, 目标位置是确定的, 问你能否在15步之内达到目标位置. 因为只有15步, 所以直接ida* #include<bits/stdc++.h> using namespa ...

  6. UVALive 6709 - Mosaic 二维线段树

    题目链接 给一个n*n的方格, 每个方格有值. 每次询问, 给出三个数x, y, l, 求出以x, y为中心的边长为l的正方形内的最大值与最小值, 输出(maxx+minn)/2, 并将x, y这个格 ...

  7. github--新手使用错误分析

    先上去github 或者任意托管的网站.注册账号,新建仓库, 在本地运行Xcode 新建工程,新建工程的时候 勾上本地 的仓库,然后 在本地的项目根目录执行下边的命令: git remote add ...

  8. 由Mifare 1卡破解带来的危险以及应对方法

    今年年初以来,一个消息的传出震惊了整个IC卡行业.最近,德国和美国的研究人员成功地破解了NXP的Mifare1芯片的安全算法.Mifare1芯片主要用于门禁系统访问控制卡,以及一些小额支付卡,应用范围 ...

  9. 工作学习笔记——GDI泄露检测利器

    用.Net写的地图编辑器,最近在一个长时间使用的策划手里频繁挂掉.定位到原因应该是GDI泄露.但在几千行代码里手工寻找泄漏点实在是有些困难,直到在网上找到了这个检测GDI泄露的工具GDILeaks.它 ...

  10. 也许有用(也谈VC中ModifyStyle&ModifyStyleEx无法改变控件的Style)

     一个View中用到了一个CListCtrl,在OnInitialUpdate函数里面他调用了m_listCtrl.ModifyStyleEx(0, LVS_EX_FULLROWSELECT);但是结 ...