题目好像难以看懂?

题目大意

给出一个字符串\(S\),统计满足以下条件的\((i,j,p,q)\)的数量。

  • \(i \leq j, p \leq q\)
  • \(S[i..j],S[p..q]\)是回文串
  • \(i < p\)或(\(i=p\)且\(j <q\))
  • \(p \leq j\)

算法

实在没懂硬求的算法,lyw lzhOrz。

我们来愉快地求补集吧:

全集很好求,接下来,枚举\(j\),我们可以求出满足\(S[i..j]\)的\(i\)的数量\(x\),然后减去\(p > j\)的\(S[p..q]\)的数量乘上\(x\)。

问题是如何求出满足\(S[i..j]\)的\(i\)的数量,这个直接套用回文树的做法即可。

\(p > j\)的\(S[p..q]\)的数量求法同理,只要加上一个部分和即可。

不过好像回文树还没有普及,事实上可以用Manacher算法求出的东西来达到同样的效果。

然后我就想了,既然Manacher在该问题中能达到回文树的效果,那么回文树能不能算出Manacher算出的东西呢???????

代码

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
using namespace std; const int MAXN = (int) 2e6 + 3;
const int MOD = (int) 1e9 + 7; typedef long long i64; int n;
char str[MAXN]; struct Node {
Node* s[26];
Node* fail;
int len, cnt;
}; Node memory[MAXN];
Node* curMem = memory;
Node* root0;
Node* root1; Node* getFail(Node* x, int i) {
while (i == x->len || str[i] != str[i - x->len - 1])
x = x->fail;
return x;
} void solve(int ans[]) {
Node* cur = root1;
for (int i = 0; i < n; i ++) {
int p = str[i] - 'a';
cur = getFail(cur, i);
if (! cur->s[p]) {
Node* x = curMem ++;
x->len = cur->len + 2;
cur->s[p] = x; if (cur == root1)
x->fail = root0;
else
x->fail = getFail(cur->fail, i)->s[p];
x->cnt = x->fail->cnt + 1;
}
cur = cur->s[p];
ans[i] = cur->cnt;
}
} int main() {
#ifdef debug
freopen("input.txt", "r", stdin);
#endif
scanf("%d\n", &n);
scanf("%s", str); static int A[MAXN], B[MAXN];
root0 = curMem ++;
root1 = curMem ++;
root1->len = -1;
root0->fail = root1; solve(A);
reverse(str, str + n);
solve(B);
reverse(B, B + n);
for (int i = n - 1; i >= 0; i --)
B[i] = (B[i] + B[i + 1]) % MOD;
i64 ans = (i64) B[0] * (B[0] - 1) % MOD * 500000004 % MOD; for (int i = 0; i + 1 < n; i ++)
ans = (ans - (i64) A[i] * B[i + 1]) % MOD;
if (ans < 0) ans += MOD;
cout << ans << endl; return 0;
}

花海漫步 NOI模拟题的更多相关文章

  1. NOI模拟题1 Problem A: sub

    题面 Sample Input 5 7 2 -1 -3 1 1 1 2 1 3 3 4 3 5 2 1 3 0 2 1 2 1 2 1 1 -3 2 Sample Output 2 4 5 2 HIN ...

  2. 神奇的矩阵 NOI模拟题

    神奇的矩阵 题目大意 有一个矩阵\(A\),第一行是给出的,接下来第\(x\)行,第\(y\)个元素的值为数字\(A_{x-1,y}\)在\(\{A_{x-1,1},A_{x-1,2},A_{x-1, ...

  3. NOI模拟题6 Problem C: Circle

    Solution 首先这个矩阵, 很明显的就是Vandermonde矩阵. 我们有公式: \[ |F_n| = \prod_{1 \le j < i \le n} (a_i - a_j) \] ...

  4. NOI模拟题5 Problem A: 开场题

    Solution 注意到\(\gcd\)具有结合律: \[ \gcd(a, b, c) = \gcd(a, \gcd(b, c)) \] 因此我们从后往前, 对于每个位置\(L\), 找到每一段不同的 ...

  5. NOI模拟题4 Problem C: 填格子(board)

    Solution 首先我们要有敏锐的直觉: 我们将每一列中不选哪种颜色看作是一个序列, 则我们发现这个序列要求相邻两位的颜色不同. 我们还发现, 一个这样的序列对应两种不同的合法的棋盘, 因此统计合法 ...

  6. NOI模拟题4 Problem B: 小狐狸(fox)

    Solution 考虑分开统计朝向每一个方向的所有狐狸对答案的贡献. 比如说以向右为例, 我们用箭标表示每一只狐狸的方向, 用\('\)表示当前一步移动之前的每一只狐狸的位置. \[ \begin{a ...

  7. NOI模拟题4 Problem A: 生成树(mst)

    Solution 我们考虑答案的表达式: \[ ans = \sqrt{\frac{\sum_{i = 1}^{n - 1} (w_i - \overline{w})^2}{n - 1}} \] 其中 ...

  8. 5.23 NOI 模拟

    $5.23\ NOI $模拟 \(T1\)简单的计算几何题 \(zjr:\)我当时没改,那么自己看题解吧 倒是有个简单的随机化方法(能获得\(72pts,\)正确性未知)\(:\) 随机两条切椭圆的平 ...

  9. poj 1008:Maya Calendar(模拟题,玛雅日历转换)

    Maya Calendar Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 64795   Accepted: 19978 D ...

随机推荐

  1. Android自定义控件(36篇)

    http://blog.csdn.net/lmj623565791/article/details/44278417 http://download.csdn.net/user/lmj62356579 ...

  2. perl lwp关闭ssl校验

    use LWP::UserAgent; use HTTP::Cookies; use HTTP::Headers; use HTTP::Response; use Encode; use File:: ...

  3. hdoj 1251 统计难题(字典树)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1251 思路分析:该问题要求求出以某个字符串为前缀的单词数目,通过使用字典树,在字典树中添加count记 ...

  4. HDOJ 1226 超级密码(bfs)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1226 思路分析:题目要求寻找一串长度不大于500的C进制的密码,且该密码需要为十进制数N的整数倍. & ...

  5. The document "ViewController.xib" could not be opened. Could not read archive.

    The document "ViewController.xib" could not be opened. Could not read archive. Please use ...

  6. 分析php获取客户端ip

    用php能获取客户端ip,这个大家都知道,代码如下: /** * 获取客户端ip * @param number $type * @return string */ function getClien ...

  7. 不重新编译PHP文件的情况下php GD库扩展库的编译安装(centos)

    gd-2.0.33.tar.gz http://www.boutell.com/gd/ jpegsrc.v6b.tar.gz http://www.ijg.org/ libpng-1.2.7.tar. ...

  8. document.execCommand()函数可用参数解析

    隐藏在暗处的方法-execCommand() 关键字: javascript document document.execCommand()方法可用来执行很多我们无法实现的操作. execComman ...

  9. Oracle游标-循环查询表中数据(表名),并执行

    Oralce 表中存有一个字段,该字段存储表名,要把该表中的所有表名查询出来(即表名结果集),且执行结果集from 表名结果集: declare v_ccount ); --定义一个游标变量 curs ...

  10. ubuntu中彻底删除nginx

    1.先执行一下命令: 1.1 删除nginx,–purge包括配置文件 sudo apt-get --purge remove nginx 1.2 自动移除全部不使用的软件包 sudo apt-get ...