BZOJ 2599 [IOI2011]Race【Tree,点分治】
给出N(1 <= N <= 200000)个结点的树,求长度等于K(1 <= K <= 1000000)的路径的最小边数。
点分治,这道题目和POJ 2114很接近,2114是求是否存在长度为K的边,但是那个K比较大。但是这道题目的K比之小了10倍。
1. 用V[i]表示到当前树根root的路径长度为i 时的点(赋值为root结点即可),这样就可以用来判断两条到根的路径长度之和是否等于K:
结点a的root的距离为i,结点b到root的距离为j,处理完a之后会得到V[i] = root,那么在处理结点b的时候,如果V[K-j] = root,就说明某一个a和b的路径长度为K,此时,就可以更新最小边数了。
2. e[i]表示到当前树根root的路径长度为i 时的边的最小条数。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <iostream>
using namespace std;
#define N 200010
#define inf 0x3f3f3f3f
struct node {
int v, l;
node() {}
node(int _v, int _l): v(_v), l(_l) {};
};
vector<node> g[N];
int n, K, cur, root, size, ans;
int s[N], f[N], d[N], e[N]; //s子树的结点数,f求重心,d子结点到根的距离,e子结点到根的边数
int v[N*10], c[N*10];
bool done[N]; void getroot(int now, int fa) {
int u;
s[now] = 1, f[now] = 0;
for (int i=0; i<g[now].size(); i++)
if ((u = g[now][i].v) != fa && !done[u]) {
getroot(u, now);
s[now] += s[u];
f[now] = max(f[now], s[u]);
}
f[now] = max(f[now], size-s[now]);
if (f[now] < f[root]) root = now;
}
void dfs1(int now, int fa) {
if (d[now] > K) return ;
if (v[K-d[now]] == cur) ans = min(ans, c[K-d[now]]+e[now]);
int u;
for (int i=0; i<g[now].size(); i++)
if ((u = g[now][i].v) != fa && !done[u]) {
d[u] = d[now] + g[now][i].l;
e[u] = e[now] + 1;
dfs1(u, now);
}
}
void dfs2(int now, int fa) {
if (d[now] > K) return ;
if (v[d[now]] != cur) {
c[d[now]] = e[now];
v[d[now]] = cur;
} else c[d[now]] = min(c[d[now]], e[now]);
int u;
for (int i=0; i<g[now].size(); i++)
if ((u = g[now][i].v) != fa && !done[u])
dfs2(u, now);
}
void work(int now) {
v[0] = cur = now + 1;
int u;
for (int i=0; i<g[now].size(); i++)
if (!done[u = g[now][i].v]) {
d[u] = g[now][i].l;
e[u] = 1;
dfs1(u, now);
dfs2(u, now);
}
getroot(now, n); //更新s数组
done[now] = true;
for (int i=0; i<g[now].size(); i++)
if (!done[u = g[now][i].v]) {
f[n] = size = s[u];
getroot(u, root=n);
work(root);
}
}
int main() {
scanf("%d%d", &n, &K);
for (int i=0; i<=n; i++) g[i].clear(); for (int i=1, a, b, c; i<n; i++) {
scanf("%d%d%d", &a, &b, &c);
g[a].push_back(node(b, c));
g[b].push_back(node(a, c));
}
memset(done, false, sizeof(done)); ans = f[n] = size = n;
getroot(0, root=n);
work(root); printf("%d\n", ans < n ? ans : -1); return 0;
}
BZOJ 2599 [IOI2011]Race【Tree,点分治】的更多相关文章
- bzoj 2599 [IOI2011]Race (点分治)
[题意] 问树中长为k的路径中包含边数最少的路径所包含的边数. [思路] 统计经过根的路径.假设当前枚举到根的第S个子树,若x属于S子树,则有: ans<-dep[x]+min{ dep[y] ...
- bzoj 2599: [IOI2011]Race【点分治】
点分治,用一个mn[v]数组记录当前root下长为v的链的最小深度,每次新加一个儿子的时候都在原来儿子更新过的mn数组里更新ans(也就是查一下mn[m-dis[p]]+de[p]) 这里注意更新和初 ...
- BZOJ 2599: [IOI2011]Race( 点分治 )
数据范围是N:20w, K100w. 点分治, 我们只需考虑经过当前树根的方案. K最大只有100w, 直接开个数组CNT[x]表示与当前树根距离为x的最少边数, 然后就可以对根的子树依次dfs并更新 ...
- bzoj 2599 [IOI2011]Race 点分
[IOI2011]Race Time Limit: 70 Sec Memory Limit: 128 MBSubmit: 4768 Solved: 1393[Submit][Status][Dis ...
- bzoj 2599: [IOI2011]Race (点分治 本地过了就是过了.jpg)
题面:(复制别人的...) Description 给一棵树,每条边有权.求一条路径,权值和等于K,且边的数量最小. Input 第一行 两个整数 n, k第二..n行 每行三个整数 表示一条无向边的 ...
- 【刷题】BZOJ 2599 [IOI2011]Race
Description 给一棵树,每条边有权.求一条简单路径,权值和等于K,且边的数量最小.N <= 200000, K <= 1000000 Input 第一行 两个整数 n, k 第二 ...
- BZOJ 2599: [IOI2011]Race
点分治,定权值,求另一关键字最小 不满足前缀加减性 可以按序遍历,用一数组$t[] 来维护路径为i的最小边数$ 再对于一个直系儿子对应的子树,先算距离求答案再更新$t数组,这样就不会重复$ #incl ...
- 2599: [IOI2011]Race
2599: [IOI2011]Race 链接 分析 被memset卡... 点分治,对于重心,遍历子树,记录一个数组T[i],表示以重心为起点的长度为i的路径中最少的边数是多少.然后先遍历子树,更新答 ...
- 【BZOJ】2599: [IOI2011]Race 点分治
[题意]给一棵树,每条边有权.求一条简单路径,权值和等于K,且边的数量最小.N <= 200000, K <= 1000000.注意点从0开始编号,无解输出-1. [算法]点分治 [题解] ...
随机推荐
- Android之ListView性能优化
ListView滚动速度优化主要可以应用以下几点方法来实现: 1.使用Adapter提供的convertView convertView是Adapter提供的视图缓存机制,当第一次显示数据的时候,ad ...
- Google Play和基于Feature的过滤
田海立@CSDN 翻译自Google Play and Feature-Based Filtering GooglePlay会过滤出那些对用户可见的应用程序,因此用户只能看到和下载那些与他们的设备兼容 ...
- EGL接口 简单介绍
from http://lyodev.appspot.com 第二章 EGL 接口 EGL 是 OpenGL ES 和底层 Native 平台视窗系统之间的接口.本章主要讲述 OpenGL ES 的 ...
- RGB与HSB之间的转换公式
先来了解一些概念: 1.RGB是一种加色模型,就是将不同比例的Red/Green/Blue混合在一起得到新颜色.通常RGB颜色模型表示为: 2.HSB(HSV) 通过色相/饱和度/亮度三要素来表达颜色 ...
- openstack安装配置
openstack:1.控制节点安装所有,计算节点只有nova-compute:2.网络选择: nova-network还是neutron: nova-network比较简单, neutron功能强大 ...
- windows上的tomcat配置
下载及安装 首先要安装JDK:jdk-7windows-x64.zip 再安装tomcat:apache-tomcat-7.0.23-windows-x64.zip 配置环境变量: CATALIN ...
- Android目录结构介绍&Android学习之hello world
分类: 嵌入式 一个android项目有如下目录: src:这里放的是我们编写的源代码 gen:这里的是eclipse自动生成的文件,不用管它 asssts:放置文件 res:也是放置文件,不同的是r ...
- Oracle语句优化规则(二)
21. 用EXISTS替换DISTINCT 当提交一个包含一对多表信息(比如部门表和雇员表)的查询时,避免在SELECT子句中使用DISTINCT. 一般可以考虑用EXIST替换 例如: ...
- read/write拥塞与非拥塞
read/write read函数从打开的设备或文件中读取数据. #include <unistd.h> ssize_t read(int fd, void *buf, size_t co ...
- JRebel 6 破解版及使用方法
最近更新到jrebel6.2.1了,我自己做了个技术分享的微信公众号(茶爸爸),有心的朋友可以来这里一起学习 云盘下载链接: http://pan.baidu.com/s/1bnGzMUF 配置: - ...