PCA

主成分分析(Principal components analysis,PCA),维基百科给出一个较容易理解的定义:“PCA是一个正交化线性变换,把数据变换到一个新的坐标系统中,使得这一数据的任何投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推,具体来说,在欧几里得空间给定一组点数,第一主成分对应于通过多维空间平均点的一条线,同时保证各个点到这条直线距离的平方和最小。去除掉第一主成分后,用同样的方法得到第二主成分。依此类推。在Σ中的奇异值均为矩阵 XXT的本征值的平方根。每一个本征值都与跟它们相关的方差是成正比的,而且所有本征值的总和等于所有点到它们的多维空间平均点距离的平方和。”。

PCA经常用于减少数据集的维数,同时保持数据集中的对方差贡献最大的特征,降维能减少预测变量的个数,提高变量之间的独立性(不相关性),用低的维数空间来解释高维数空间,其核心思想是将原来众多具有一定相关性,重新组合成一组新的互相无关的综合指标来代替原来的指标。

使用PCA的好处在于:我们可以对新求出的“主元”向量的重要性进行排序,根据需要取前面最重要的部分,将后面的维数省去,可以达到降维从而简化模型或是对数据进行压缩的效果,同时最大程度的保持了原有数据的信息,较低的维数意味着运算量的减少,在数据较多的情况带来的性能提高更明显。

我们使用PCA取图片特征码后,可以用神经网络 和SVM进行训练。

本博客所有内容是原创,如果转载请注明来源

http://blog.csdn.net/myhaspl/

下面是应用PCA取图片特征码

 for now_h in xrange(0,h,h_interval):
for now_w in xrange(0,w,w_interval):
b = img[now_h:now_h+h_interval,now_w:now_w+w_interval,0]
g = img[now_h:now_h+h_interval,now_w:now_w+w_interval,1]
r = img[now_h:now_h+h_interval,now_w:now_w+w_interval,2]
btz=np.mean(b)
gtz=np.mean(g)
rtz=np.mean(r)
alltz.append([btz,gtz,rtz])
result_alltz=np.array(alltz).T
pca = mlpy.PCA()
pca.learn(result_alltz)
result_alltz = pca.transform(result_alltz, k=len(result_alltz)/2)
result_alltz =result_alltz.reshape(len(result_alltz))

数学之路(3)-机器学习(3)-机器学习算法-PCA的更多相关文章

  1. 【原创】机器学习之PageRank算法应用与C#实现(2)球队排名应用与C#代码

    在上一篇文章:机器学习之PageRank算法应用与C#实现(1)算法介绍 中,对PageRank算法的原理和过程进行了详细的介绍,并通过一个很简单的例子对过程进行了讲解.从上一篇文章可以很快的了解Pa ...

  2. 【原创】机器学习之PageRank算法应用与C#实现(1)算法介绍

    考虑到知识的复杂性,连续性,将本算法及应用分为3篇文章,请关注,将在本月逐步发表. 1.机器学习之PageRank算法应用与C#实现(1)算法介绍 2.机器学习之PageRank算法应用与C#实现(2 ...

  3. 机器学习中的算法-决策树模型组合之随机森林与GBDT

    机器学习中的算法(1)-决策树模型组合之随机森林与GBDT 版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使 ...

  4. 机器学习&深度学习基础(机器学习基础的算法概述及代码)

    参考:机器学习&深度学习算法及代码实现 Python3机器学习 传统机器学习算法 决策树.K邻近算法.支持向量机.朴素贝叶斯.神经网络.Logistic回归算法,聚类等. 一.机器学习算法及代 ...

  5. 机器学习中的算法(2)-支持向量机(SVM)基础

    版权声明:本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gma ...

  6. 【机器学习】EM算法详细推导和讲解

    今天不太想学习,炒个冷饭,讲讲机器学习十大算法里有名的EM算法,文章里面有些个人理解,如有错漏,还请读者不吝赐教. 众所周知,极大似然估计是一种应用很广泛的参数估计方法.例如我手头有一些东北人的身高的 ...

  7. 转:机器学习中的算法(2)-支持向量机(SVM)基础

    机器学习中的算法(2)-支持向量机(SVM)基础 转:http://www.cnblogs.com/LeftNotEasy/archive/2011/05/02/basic-of-svm.html 版 ...

  8. 机器学习实战基础(二十一):sklearn中的降维算法PCA和SVD(二) PCA与SVD 之 降维究竟是怎样实现

    简述 在降维过程中,我们会减少特征的数量,这意味着删除数据,数据量变少则表示模型可以获取的信息会变少,模型的表现可能会因此受影响.同时,在高维数据中,必然有一些特征是不带有有效的信息的(比如噪音),或 ...

  9. 机器学习算法-PCA降维技术

    机器学习算法-PCA降维 一.引言 在实际的数据分析问题中我们遇到的问题通常有较高维数的特征,在进行实际的数据分析的时候,我们并不会将所有的特征都用于算法的训练,而是挑选出我们认为可能对目标有影响的特 ...

  10. 机器学习十大算法之KNN(K最近邻,k-NearestNeighbor)算法

    机器学习十大算法之KNN算法 前段时间一直在搞tkinter,机器学习荒废了一阵子.如今想重新写一个,发现遇到不少问题,不过最终还是解决了.希望与大家共同进步. 闲话少说,进入正题. KNN算法也称最 ...

随机推荐

  1. IRQL_NOT_LESS_OR_EQUAL的问题最终算攻克了

    今日想提高我那台古董笔记本extensa 4620Z的执行效率.方便我编程. 我先用万能的硬件检測工具,反正也就那几个流氓软件看了下.内存是ddr2的.我也顺带补习了一下许久不碰的硬件知识.ddr2和 ...

  2. Python 正则表达试

    字符串是编程时涉及到的最多的一种数据结构,对字符串进行操作的需求几乎无处不在.比如判断一个字符串是否是合法的Email地址,虽然可以编程提取@前后的子串,再分别判断是否是单词和域名,但这样做不但麻烦, ...

  3. IO-File 文件 目录 基本操作 递归 遍历

    创建和删除 //创建文件 File file1 = new File("不存在的文件.txt");//注意,这一步并没有创建文件,只是把磁盘中的文件封装成了一个对象 System. ...

  4. DateBox( 日期输入框) 组件

    本节课重点了解 EasyUI 中 DateBox(日期输入框)组件的使用方法,这个组件依赖于 Combo(自定义下拉框)和 Calendar(日历). 一. 加载方式//class 加载方式<i ...

  5. 随笔: WC2016感想

    在某些时刻,我可以体会到非常复杂的情感,这种情感神秘的来源不能被描述.它非常的复杂.你无法分清,这种情感是来源于一个个神经元控制的情感系统的一时冲动,亦或是你如实地反馈了你所正在感知的外界. 但我曾在 ...

  6. Word 2010发布博客文章

    只测试了cnblog 1.新建文件选择word 2010自带的博客文章模板 2.在管理账户中新建一个博客账户,也就是你自己在博客园的账户,博客选其他 3.然后选择下一步,博客的URL在自己的博客设置里 ...

  7. Mysql创建函数出错

    目前在项目中,执行创建mysql的函数出错, mysql 创建函数出错信息如下: Error Code: 1227. Access denied; you need (at least one of) ...

  8. 3月19日 html(一) html基础内容

    ---恢复内容开始--- 今天学习了html的第一节课,是些比较简单的基础知识,知道如何向网页里添加文本.图片.表格.超链接之类的,如何去编写这些代码. html(hyper text makeup ...

  9. jQuery插件实现select下拉框左右选择_交换内容(multiselect2side)

    效果图: 使用jQuery插件---multiselect2side做法: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitio ...

  10. centos上安装rabbitmq并且python测试

    把我的阿里云重置了一下,重新安装rabbitmq,看看会出现什么问题. 首先,把erlang环境安装一下,直接 yum list | grep erlang erlang.x86_64 R16B-03 ...