POJ 3675 Telescope
题意:给定一个不自交的多边形,要求和圆心在原点的圆的面积交.
思路:同POJ2986,是加强版
代码:
#include<algorithm>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
struct Point{
double x,y;
Point(){}
Point(double x0,double y0):x(x0),y(y0){}
}p[],a[],O;
struct Line{
Point s,e;
Line(){}
Line(Point s0,Point e0):s(s0),e(e0){}
};
int n;
double R;
const double eps=1e-;
const double Pi=acos(-);
double sgn(double x){
if (x>eps) return 1.0;
if (x<-eps) return -1.0;
return ;
}
Point operator *(Point p1,double x){
return Point(p1.x*x,p1.y*x);
}
Point operator /(Point p1,double x){
return Point(p1.x/x,p1.y/x);
}
double operator /(Point p1,Point p2){
return p1.x*p2.x+p1.y*p2.y;
}
double operator *(Point p1,Point p2){
return p1.x*p2.y-p1.y*p2.x;
}
Point operator +(Point p1,Point p2){
return Point(p1.x+p2.x,p1.y+p2.y);
}
Point operator -(Point p1,Point p2){
return Point(p1.x-p2.x,p1.y-p2.y);
}
double dis(Point p1){
return sqrt(p1.x*p1.x+p1.y*p1.y);
}
double dis(Point p1,Point p2){
return dis(Point(p1.x-p2.x,p1.y-p2.y));
}
double sqr(double x){
return x*x;
}
double dist_line(Line p){
double A,B,C,dist;
A=p.s.y-p.e.y;
B=p.s.x-p.e.x;
C=p.s.x*p.e.y-p.s.y*p.e.x;
dist=fabs(C)/sqrt(sqr(A)+sqr(B));
return dist;
}
double get_cos(double a,double b,double c){
return (b*b+c*c-a*a)/(*b*c);
}
double get_angle(Point p1,Point p2){
if (!sgn(dis(p1))||!sgn(dis(p2))) return 0.0;
double A,B,C;
A=dis(p1);
B=dis(p2);
C=dis(p1,p2);
if (C<=eps) return 0.0;
return acos(get_cos(C,A,B));
}
Point get_point(Point p){
double T=sqr(p.x)+sqr(p.y);
return Point(sgn(p.x)*sqrt(sqr(p.x)/T),sgn(p.y)*sqrt(sqr(p.y)/T));
}
double S(Point p1,Point p2,Point p3){
return fabs((p2-p1)*(p3-p1))/;
}
double work(Point p1,Point p2){
double f=sgn(p1*p2),res=;
if (!sgn(f)||!sgn(dis(p1))||!sgn(dis(p2))) return 0.0;
double l=dist_line(Line(p1,p2));
double a=dis(p1);
double b=dis(p2);
double c=dis(p1,p2);
if (a<=R&&b<=R){
return fabs(p1*p2)/2.0*f;
}
if (a>=R&&b>=R&&l>=R){
double ang=get_angle(p1,p2);
return fabs((ang/(2.0))*(R*R))*f;
}
if (a>=R&&b>=R&&l<=R&&(get_cos(a,b,c)<=||get_cos(b,a,c)<=)){
double ang=get_angle(p1,p2);
return fabs((ang/(2.0))*(R*R))*f;
}
if (a>=R&&b>=R&&l<=R&&(get_cos(a,b,c)>&&get_cos(b,a,c)>)){
double dist=dist_line(Line(p1,p2));
double len=sqrt(sqr(R)-sqr(dist))*2.0;
double ang1=get_angle(p1,p2);
double cos2=get_cos(len,R,R);
res+=fabs(len*dist/2.0);
double ang2=ang1-acos(cos2);
res+=fabs((ang2/())*(R*R));
return res*f;
}
if ((a>=R&&b<R)||(a<R&&b>=R)){
if (b>a) std::swap(a,b),std::swap(p1,p2);
double T=sqr(p1.x-p2.x)+sqr(p1.y-p2.y);
Point u=Point(sgn(p1.x-p2.x)*sqrt(sqr(p1.x-p2.x)/T),sgn(p1.y-p2.y)*sqrt(sqr(p1.y-p2.y)/T));
double dist=dist_line(Line(p1,p2));
double len=sqrt(R*R-dist*dist);
double len2=sqrt(sqr(dis(p2))-sqr(dist));
if (fabs(dis(p2+u*len2)-dist)<=eps) len+=len2;
else len-=len2;
Point p=p2+u*len;
res+=S(O,p2,p);
double ang=get_angle(p1,p);
res+=fabs((ang/2.0)*R*R);
return res*f;
}
return ;
}
int main(){
O=Point(,);
while (scanf("%lf",&R)!=EOF){
scanf("%d",&n);
for (int i=;i<=n;i++)
scanf("%lf%lf",&p[i].x,&p[i].y);
p[n+]=p[];
double ans=;
for (int i=;i<=n;i++)
ans+=work(p[i],p[i+]);
ans=fabs(ans);
printf("%.2f\n",ans);
}
}
POJ 3675 Telescope的更多相关文章
- poj 3675 Telescope (圆与多边形面积交)
3675 -- Telescope 再来一题.这题的代码还是继续完全不看模板重写的. 题意不解释了,反正就是一个单纯的圆与多边形的交面积. 这题的精度有点搞笑.我用比较高的精度来统计面积,居然wa了. ...
- POJ 3675 Telescope(简单多边形和圆的面积交)
Description Updog is watching a plane object with a telescope. The field of vision in the telescope ...
- POJ 3675 Telescope 简单多边形和圆的面积交
这道题得控制好精度,不然会贡献WA QAQ 还是那个规则: int sgn(double x){ if(x > eps) return 1; else if(x < - eps) ret ...
- ACM计算几何题目推荐
//第一期 计算几何题的特点与做题要领: 1.大部分不会很难,少部分题目思路很巧妙 2.做计算几何题目,模板很重要,模板必须高度可靠. 3.要注意代码的组织,因为计算几何的题目很容易上两百行代码,里面 ...
- 穷举(四):POJ上的两道穷举例题POJ 1411和POJ 1753
下面给出两道POJ上的问题,看如何用穷举法解决. [例9]Calling Extraterrestrial Intelligence Again(POJ 1411) Description A mes ...
- POJ 3130 How I Mathematician Wonder What You Are! (半平面交)
题目链接:POJ 3130 Problem Description After counting so many stars in the sky in his childhood, Isaac, n ...
- POJ 3370. Halloween treats 抽屉原理 / 鸽巢原理
Halloween treats Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 7644 Accepted: 2798 ...
- POJ 2356. Find a multiple 抽屉原理 / 鸽巢原理
Find a multiple Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7192 Accepted: 3138 ...
- POJ 2965. The Pilots Brothers' refrigerator 枚举or爆搜or分治
The Pilots Brothers' refrigerator Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 22286 ...
随机推荐
- 深入理解7816(2)---关于ATR
智能卡(此处主要指接触式CPU卡)本身始终处于被动的状态,所以终端设备在和智能卡进行数据交互的时候,需要首先给智能卡发指令,智能卡才会对应地给出应答.而智能卡告诉终端的第一句话就是ATR,亦即“复位应 ...
- EE就业最好的方向是转CS,其次是VLSI/ASIC DESIGN & VERIFICATION
Warald在2012年写过一篇文章<EE现在最好就业的方向是VLSI/ASIC DESIGN VERIFICATION>,三年过去了,很多学电子工程的同学想知道现在形势如何. 首先,按照 ...
- 脱机BT transmission
脱机BT transmission http://192.168.1.1:9091 也可以在使用Transmission Remote软件进行管理,如果下载太慢检查QoS 如果开了防火墙,需要打开默认 ...
- Java中一些常用的代码
总结一下最近程序中用到的代码吧,大部分不是自己写的,放到这里,备份一下,以后忘记了来看一下: //正则表达式验证手机号 public static void phoneTest(String phon ...
- android开发学习 几个有用的学习资料~
<Android高级应用开发-基础篇> 针对Android基础入门课程,包含了Android四大件基础.UI,Launcher等等.这个课程学习之后也是进一步深入的基础. <Andr ...
- 关于bootstrap--表单控件(disabled表单禁用、显示表单验证的样式)
1.disabled: (1)在input中加入disabled可使表单禁用,如图: <input class="form-control input-lg" id=&quo ...
- hdu 1695 GCD(欧拉函数+容斥)
Problem Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD( ...
- python学习Processing
# -*- coding: utf-8 -*-__author__ = 'Administrator'import bisect#排序说明:http://en.wikipedia.org/wiki/i ...
- html a标签打开邮件
<a href="mailto:frotech@foxmail.com" target="_blank">frotech@foxmail.com&l ...
- C# IoC 容器
Unity是Unity是微软patterns& practices组用C#实现的轻量级,可扩展的依赖注入容器,它为方便开发者建立松散耦合的应用程序, 有以下优点: 1.简化了对象的创建,特别是 ...