又到清明时节,……

注意:带阻滤波器不能用第2类线性相位滤波器实现,我们采用第1类,长度为基数,选M=61

代码:

%% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
%% Output Info about this m-file
fprintf('\n***********************************************************\n');
fprintf(' <DSP using MATLAB> Problem 7.24 \n\n'); banner();
%% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ % bandstop filter
% Type-2 FIR ---- No highpass or bandstop
wp1 = 0.3*pi; ws1 = 0.4*pi; ws2 = 0.6*pi; wp2 = 0.7*pi;
As = 50; Rp = 0.2;
tr_width = min( ws1-wp1, wp2-ws2 ); T1 = 0.5925; T2=0.1099;
M = 61; alpha = (M-1)/2; l = 0:M-1; wl = (2*pi/M)*l;
n = [0:1:M-1]; wc1 = (ws1+wp1)/2; wc2 = (wp2+ws2)/2; Hrs = [ones(1,10),T1,T2,zeros(1,7),T2,T1,ones(1,20),T1,T2,zeros(1,7),T2,T1,ones(1,9)]; % Ideal Amp Res sampled
Hdr = [1, 1, 0, 0, 1, 1]; wdl = [0, 0.3, 0.4, 0.6, 0.7, 1]; % Ideal Amp Res for plotting
k1 = 0:floor((M-1)/2); k2 = floor((M-1)/2)+1:M-1; %% ----------------------------------
%% Type-1 LPF
%% ----------------------------------
angH = [-alpha*(2*pi)/M*k1, alpha*(2*pi)/M*(M-k2)];
H = Hrs.*exp(j*angH); h = real(ifft(H, M)); [db, mag, pha, grd, w] = freqz_m(h, 1); delta_w = 2*pi/1000;
[Hr, ww, a, L] = Hr_Type1(h); Rp = -(min(db(1 :1: floor(wp1/delta_w)))); % Actual Passband Ripple
fprintf('\nActual Passband Ripple is %.4f dB.\n', Rp);
As = -round(max(db(floor(ws1/delta_w)+1 : 1 : 0.55*pi/delta_w))); % Min Stopband attenuation
fprintf('\nMin Stopband attenuation is %.4f dB.\n', As); [delta1, delta2] = db2delta(Rp, As) %Plot figure('NumberTitle', 'off', 'Name', 'Problem 7.24a FreSamp Method')
set(gcf,'Color','white');
subplot(2,2,1); plot(wl(1:31)/pi, Hrs(1:31), 'o', wdl, Hdr, 'r'); axis([0, 1, -0.1, 1.1]);
set(gca,'YTickMode','manual','YTick',[0,0.5,1]);
set(gca,'XTickMode','manual','XTick',[0,0.3,0.4,0.6,0.7,1]);
xlabel('frequency in \pi nuits'); ylabel('Hr(k)'); title('Frequency Samples: M=61,T1=0.5925,T2=0.1099');
grid on; subplot(2,2,2); stem(l, h); axis([-1, M, -0.3, 0.8]); grid on;
xlabel('n'); ylabel('h(n)'); title('Impulse Response'); subplot(2,2,3); plot(ww/pi, Hr, 'r', wl(1:31)/pi, Hrs(1:31), 'o'); axis([0, 1, -0.2, 1.2]); grid on;
xlabel('frequency in \pi units'); ylabel('Hr(w)'); title('Amplitude Response');
set(gca,'YTickMode','manual','YTick',[0,0.5,1]);
set(gca,'XTickMode','manual','XTick',[0,0.3,0.4,0.6,0.7,1]); subplot(2,2,4); plot(w/pi, db); axis([0, 1, -100, 10]); grid on;
xlabel('frequency in \pi units'); ylabel('Decibels'); title('Magnitude Response');
set(gca,'YTickMode','manual','YTick',[-90,-58,0]);
set(gca,'YTickLabelMode','manual','YTickLabel',['90';'58';' 0']);
set(gca,'XTickMode','manual','XTick',[0,0.3,0.4,0.6,0.7,1]); figure('NumberTitle', 'off', 'Name', 'Problem 7.24 h(n) FreSamp Method')
set(gcf,'Color','white'); subplot(2,2,1); plot(w/pi, db); grid on; axis([0 1 -120 10]);
set(gca,'YTickMode','manual','YTick',[-90,-58,0])
set(gca,'YTickLabelMode','manual','YTickLabel',['90';'58';' 0']);
set(gca,'XTickMode','manual','XTick',[0,0.3,0.4,0.6,0.7,1]);
xlabel('frequency in \pi units'); ylabel('Decibels'); title('Magnitude Response in dB'); subplot(2,2,3); plot(w/pi, mag); grid on; %axis([0 1 -100 10]);
xlabel('frequency in \pi units'); ylabel('Absolute'); title('Magnitude Response in absolute');
set(gca,'XTickMode','manual','XTick',[0,0.3,0.4,0.6,0.7,1,1.3,1.4,1.6,1.7,2]);
set(gca,'YTickMode','manual','YTick',[0,1.0]); subplot(2,2,2); plot(w/pi, pha); grid on; %axis([0 1 -100 10]);
xlabel('frequency in \pi units'); ylabel('Rad'); title('Phase Response in Radians');
subplot(2,2,4); plot(w/pi, grd*pi/180); grid on; %axis([0 1 -100 10]);
xlabel('frequency in \pi units'); ylabel('Rad'); title('Group Delay'); figure('NumberTitle', 'off', 'Name', 'Problem 7.24 AmpRes of h(n), FreSamp Method')
set(gcf,'Color','white'); plot(ww/pi, Hr); grid on; %axis([0 1 -100 10]);
xlabel('frequency in \pi units'); ylabel('Hr'); title('Amplitude Response');
set(gca,'YTickMode','manual','YTick',[-delta2, 0,delta2, 1-0.035, 1,1+0.035]);
%set(gca,'YTickLabelMode','manual','YTickLabel',['90';'45';' 0']);
set(gca,'XTickMode','manual','XTick',[0,0.3,0.4,0.6,0.7,1]); %% ------------------------------------
%% fir2 Method
%% ------------------------------------
f = [0 wp1 ws1 ws2 wp2 pi]/pi;
m = [1 1 0 0 1 1];
h_check = fir2(M+1, f, m); % if M is odd, then M+1; order
[db, mag, pha, grd, w] = freqz_m(h_check, [1]);
%[Hr,ww,P,L] = ampl_res(h_check);
[Hr, ww, a, L] = Hr_Type1(h_check); fprintf('\n-------------fir2 Method start-----------------\n');
Rp = -(min(db(1 :1: floor(wp1/delta_w)))); % Actual Passband Ripple
fprintf('\nActual Passband Ripple is %.4f dB.\n', Rp);
%As = -round(max(db(floor(0.45*pi/delta_w)+1 : 1 : ws2/delta_w))); % Min Stopband attenuation
As = -round(max(db(floor(0.45*pi/delta_w)+1 : 1 : 0.55*pi/delta_w)));
fprintf('\nMin Stopband attenuation is %.4f dB.\n', As); [delta1, delta2] = db2delta(Rp, As) figure('NumberTitle', 'off', 'Name', 'Problem 7.24 fir2 Method')
set(gcf,'Color','white'); subplot(2,2,1); stem(n, h); axis([0 M-1 -0.3 0.8]); grid on;
xlabel('n'); ylabel('h(n)'); title('Impulse Response'); %subplot(2,2,2); stem(n, w_ham); axis([0 M-1 0 1.1]); grid on;
%xlabel('n'); ylabel('w(n)'); title('Hamming Window'); subplot(2,2,3); stem([0:M+1], h_check); axis([0 M+1 -0.3 0.8]); grid on;
xlabel('n'); ylabel('h\_check(n)'); title('Actual Impulse Response'); subplot(2,2,4); plot(w/pi, db); axis([0 1 -120 10]); grid on;
set(gca,'YTickMode','manual','YTick',[-90,-64,-21,0])
set(gca,'YTickLabelMode','manual','YTickLabel',['90';'64';'21';' 0']);
set(gca,'XTickMode','manual','XTick',[0,0.3,0.4,0.6,0.7,1]);
xlabel('frequency in \pi units'); ylabel('Decibels'); title('Magnitude Response in dB'); figure('NumberTitle', 'off', 'Name', 'Problem 7.24 h(n) fir2 Method')
set(gcf,'Color','white'); subplot(2,2,1); plot(w/pi, db); grid on; axis([0 1 -120 10]);
xlabel('frequency in \pi units'); ylabel('Decibels'); title('Magnitude Response in dB');
set(gca,'YTickMode','manual','YTick',[-90,-64,-21,0]);
set(gca,'YTickLabelMode','manual','YTickLabel',['90';'64';'21';' 0']);
set(gca,'XTickMode','manual','XTick',[0,0.3,0.4,0.6,0.7,1,1.3,1.4,1.6,1.7,2]); subplot(2,2,3); plot(w/pi, mag); grid on; %axis([0 1 -100 10]);
xlabel('frequency in \pi units'); ylabel('Absolute'); title('Magnitude Response in absolute');
set(gca,'XTickMode','manual','XTick',[0,0.3,0.4,0.6,0.7,1,1.3,1.4,1.6,1.7,2]);
set(gca,'YTickMode','manual','YTick',[0,1.0]); subplot(2,2,2); plot(w/pi, pha); grid on; %axis([0 1 -100 10]);
xlabel('frequency in \pi units'); ylabel('Rad'); title('Phase Response in Radians');
subplot(2,2,4); plot(w/pi, grd*pi/180); grid on; %axis([0 1 -100 10]);
xlabel('frequency in \pi units'); ylabel('Rad'); title('Group Delay'); figure('NumberTitle', 'off', 'Name', 'Problem 7.24 AmpRes of h(n),fir2 Method')
set(gcf,'Color','white'); plot(ww/pi, Hr); grid on; %axis([0 1 -100 10]);
xlabel('frequency in \pi units'); ylabel('Hr'); title('Amplitude Response');
set(gca,'YTickMode','manual','YTick',[-0.004, 0,0.004, 1-0.004, 1,1+0.004]);
%set(gca,'YTickLabelMode','manual','YTickLabel',['90';'45';' 0']);
set(gca,'XTickMode','manual','XTick',[0,0.3,0.4,0.6,0.7,1]);

运行结果:

过渡带中有两个采样值,优化值直接抄书上的。

采用频率采样方法得到的脉冲响应

采用fir2函数 的方法得到滤波器脉冲响应

《DSP using MATLAB》Problem 7.24的更多相关文章

  1. 《DSP using MATLAB》Problem 6.24

    代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ %% Output In ...

  2. 《DSP using MATLAB》Problem 4.24

    Y(z)部分分式展开, 零状态响应部分分式展开, 零输入状态部分分式展开,

  3. 《DSP using MATLAB》Problem 6.15

    代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ %% Output In ...

  4. 《DSP using MATLAB》Problem 6.8

    代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ %% Output In ...

  5. 《DSP using MATLAB》Problem 5.24-5.25-5.26

    代码: function y = circonvt(x1,x2,N) %% N-point Circular convolution between x1 and x2: (time domain) ...

  6. 《DSP using MATLAB》Problem 4.15

    只会做前两个, 代码: %% ---------------------------------------------------------------------------- %% Outpu ...

  7. 《DSP using MATLAB》Problem 2.16

    先由脉冲响应序列h(n)得到差分方程系数,过程如下: 代码: %% ------------------------------------------------------------------ ...

  8. 《DSP using MATLAB》 Problem 2.3

    本题主要是显示周期序列的. 1.代码: %% ------------------------------------------------------------------------ %% O ...

  9. 《DSP using MATLAB》Problem 7.29

    代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ %% Output In ...

随机推荐

  1. egret 简单的四方向的a星寻路,在wing中可以直接跑

    /** * main类中加载场景 * 创建游戏场景 * Create a game scene */ private createGameScene() { MtwGame.Instance.init ...

  2. Java获取客户端真实IP

    一般情况下,我们可以使用 request 的 getRemoteAddr()  方法获取客户端实际 IP ,但是使用反向代理后,我们使用 getRemoteAddr() 是无法获取真实的  IP 的. ...

  3. CSS3动画与JS动画的优缺点?

    JS动画: 缺点:1.JS在浏览器的主线程中运行,而主线程还有其他的js脚本,样式布局,绘制任务等,对其干扰可能导致线程出现阻塞,从而造成丢帧的情况. 2.JS动画代码复杂度高于CSS3动画. 优点: ...

  4. ASP.NET 性能监控工具和优化技巧

    转载自:http://blog.haoitsoft.com/index.php/archives/657 ASP.NET 性能监控工具和优化技巧 发表回复 为了阐明准确甄别性能问题的重要性,下面列举了 ...

  5. [linux-脚本]shebang(shabang #!)

    使用Linux或者unix系统的人们对#!这个符号都不陌生,但要说出个具体的所以然来,很多人估计还真不行,我们有必要就此整理一下.Shebang这个符号通常在Unix系统的脚本中第一行开头中写到,它指 ...

  6. day 14 三元运算符,列表字典推导式,递归,匿名函数,内置函数(排序,映射,过滤,合并)

    一.三元运算符 就是if.....else..... 语法糖 前提:if和else只有一条语句 #原始版 cmd=input('cmd') if cmd.isdigit(): print('1') e ...

  7. 如何优雅的关闭Golang Channel?

    Channel关闭原则 不要在消费端关闭channel,不要在有多个并行的生产者时对channel执行关闭操作. 也就是说应该只在[唯一的或者最后唯一剩下]的生产者协程中关闭channel,来通知消费 ...

  8. Qt终结者之QML动画

    前言 使用QML差不多2年了,在使用过程中深深的感受到QML的强大与便捷,让我深陷其中,不能自拔.其中QML相比传统的界面最大的优势就是便捷的动画效果与炫酷的粒子效果,让QML做出来的界面能媲美WPF ...

  9. 关于jQuery实现CheckBox全选只能生效一次的问题

    //这代码只有一次全选.全不选的效果 第三次点击checkall会没有任何效果 $("#checkall").click(function(){ $('input[name=&qu ...

  10. protel项目创建

    File->New->Project->PCB Project//新建PCB项目 Save Project As... Project->Add New to Project- ...