attention_mechanism = tf.contrib.seq2seq.BahdanauAttention(num_units=FLAGS.rnn_hidden_size, memory = encoder_outputs, memory_sequence_length = encoder_sequence_length)

这一步创造一个attention_mechanism。通过__call__(self, query, previous_alignments)来调用,输入query也就是decode hidden,输入previous_alignments是encode hidden,输出是一个attention概率矩阵

helper = tf.contrib.seq2seq.ScheduledEmbeddingTrainingHelper(inputs, tf.to_int32(sequence_length), emb, tf.constant(FLAGS.scheduled_sampling_probability))

创建一个helper,用来处理每个时刻的输入和输出

my_decoder = tf.contrib.seq2seq.BasicDecoder(cell = cell, helper = helper, initial_state = state)

调用的核心部分。通过def step(self, time, inputs, state, name=None)来控制每一个进行decode

首先把inputs和attention进行concat作为输入。(为什么这样做,参考LSTM的实现 W1U+W2V,其实是把U,V concat在乘以一个W),那么这里inputs就是U,attention就是V(其实tf.concat(query,attention矩阵 * memory)在做个outpreject)。

outputs, state, final_sequence_lengths = tf.contrib.seq2seq.dynamic_decode(my_decoder, scope='seq_decode')

最后通过dynamic_decode来控制整个flow

写到前面:

先看:

class BasicRNNCell(RNNCell):

def call(self, inputs, state):
"""Most basic RNN: output = new_state = act(W * input + U * state + B)."""
if self._linear is None:
self._linear = _Linear([inputs, state], self._num_units, True)

这个是核心,也就是W * input + U * state + B的实现,tf是用_Linear来实现的(_Linear的实现就是把input和state进行concat,然后乘以一个W)。由于rnn只有hidden,所以这里的state就是hidden

再看

class BasicLSTMCell(RNNCell):

if self._state_is_tuple:
c, h = state
else:
c, h = array_ops.split(value=state, num_or_size_splits=2, axis=1)

if self._linear is None:
self._linear = _Linear([inputs, h], 4 * self._num_units, True)
# i = input_gate, j = new_input, f = forget_gate, o = output_gate
i, j, f, o = array_ops.split(
value=self._linear([inputs, h]), num_or_size_splits=4, axis=1)

new_c = (
c * sigmoid(f + self._forget_bias) + sigmoid(i) * self._activation(j))
new_h = self._activation(new_c) * sigmoid(o)

if self._state_is_tuple:
new_state = LSTMStateTuple(new_c, new_h)
else:
new_state = array_ops.concat([new_c, new_h], 1)
return new_h, new_state

就非常明显了,由于lstm的state是由两部分构成的,一个是hidden,一个是state,第一步先split。之后用inputs和h进行linear,由于我们要输出4个结果,记得输出维度一定要是4*_num_units。然后根据公式再进行后面的操作,最后返回新的hidden和state,也很直观。

之后再看,加入attention之后怎么弄:

我们这里的attention为encode hidden,那么根据公式是attention和decode hidden进行concat作为一个大的hidden,之后和inputs一起进入网络。

但是,tf实现的时候是这样子的,首先把attention和inputs进行concat,之后把连接的结果作为inputs和decode hidden一起送入网络。为什么能这么做呢,是因为在网络内部其实也是concat之后再linear,参考上面的BasicLSTMCell实现,所有关键就是把(inputs,attention,decode hidden)concat一起就行了,不管顺序是啥。说道这里你终于明白了AttentionWrapper到底是干啥的了。那么attention怎么计算呢,有个_compute_attention函数。我感觉就是非常直接了,attention_mechanism是你需要的attention映射矩阵的方式,

def _compute_attention(attention_mechanism, cell_output, previous_alignments,
attention_layer):
"""Computes the attention and alignments for a given attention_mechanism."""
alignments = attention_mechanism(
cell_output, previous_alignments=previous_alignments)

# Reshape from [batch_size, memory_time] to [batch_size, 1, memory_time]
expanded_alignments = array_ops.expand_dims(alignments, 1)
# Context is the inner product of alignments and values along the
# memory time dimension.
# alignments shape is
# [batch_size, 1, memory_time]
# attention_mechanism.values shape is
# [batch_size, memory_time, memory_size]
# the batched matmul is over memory_time, so the output shape is
# [batch_size, 1, memory_size].
# we then squeeze out the singleton dim.
context = math_ops.matmul(expanded_alignments, attention_mechanism.values)
context = array_ops.squeeze(context, [1])

if attention_layer is not None:
attention = attention_layer(array_ops.concat([cell_output, context], 1))
else:
attention = context

return attention, alignments

新版seqseq接口说明的更多相关文章

  1. 虹软最新版 python 接口 完整版

    虹软最新版 python 接口 完整版 当前开源的人脸检测模型,识别很多,很多小伙伴也踩过不少坑.相信不少使用过dlib和facenet人脸识别的小伙伴都有这样的疑惑,为什么论文里高达99.8以上的准 ...

  2. javascript使用H5新版媒体接口navigator.mediaDevices.getUserMedia,做扫描二维码,并识别内容

    本文代码测试要求,最新的chrome浏览器(手机APP),并且要允许chrome拍照录像权限,必须要HTTPS协议,http不支持. 原理:调用摄像头,将摄像头返回的媒体流渲染到视频标签中,再通过ca ...

  3. 夺命雷公狗---微信开发55----微信js-sdk接口开发(2)接口功能介绍之签名算法

    我们JS-SDK里面其实有不少的接口 startRecord---录音 stopRecord---停止录音 playVoice---播放 pauseVoice---暂停播放 uploadImage-- ...

  4. 使用Github Pages建独立博客

    http://beiyuu.com/github-pages/ Github很好的将代码和社区联系在了一起,于是发生了很多有趣的事情,世界也因为他美好了一点点.Github作为现在最流行的代码仓库,已 ...

  5. 微信:JSSDK开发

    根据微信开发文档步骤如下: 1.先登录微信公众平台进入“公众号设置”的“功能设置”里填写“JS接口安全域名”. JS接口安全域名设置 mi.com(前面不用带www/http,域名必须备案过) 2.引 ...

  6. 微信公众平台开发 微信JSSDK开发

    根据微信开发文档步骤如下: 1.先登录微信公众平台进入“公众号设置”的“功能设置”里填写“JS接口安全域名”. JS接口安全域名设置 mi.com(前面不用带www/http,域名必须备案过) 2.引 ...

  7. 【周年版】Cnblogs for Android

    前言 扒衣见君节刚过去但是炎热夏天还在继续: 自14年8月推出博客园Android客户端以来,断断续续发了十几个后续版本,期间出现过各种问题,由于接口等诸多因素,每个模块的功能都可能随着时间和博客园主 ...

  8. 微信公众平台JSSDK开发

    根据微信开发文档步骤如下: 1.先登录微信公众平台进入“公众号设置”的“功能设置”里填写“JS接口安全域名”.JS接口安全域名设置 mi.com(前面不用带www/http,域名必须备案过) 2.引入 ...

  9. 微信JS-SDK

    <div class="lbox_close wxapi_form"> <h3 id="menu-basic">基础接口</h3& ...

随机推荐

  1. sql server中的while循环语句

    语法格式: while 条件 begin ....... end declare @num begin update SDetail end

  2. Qt QML 2D shader

    --------------------------------------------------- Qt quick 2d shader effect ---------------------- ...

  3. 2018.6.10数据结构串讲_HugeGun

    链接: https://pan.baidu.com/s/1uQwLZAT8gjENDWLDm7-Oig 密码: mk8p @echo off : ) shuju test test_ fc test. ...

  4. centos6删除mysql安装

    1.查看已经安装了的mysql包: 2.卸载mysql: 3.查看剩下的mysql安装包: 4.逐个删除剩下的mysql安装包: 5.删除完后再次查看,以确保已删除干净: 6.删除自己安装的mysql ...

  5. Selenium及Headless Chrome抓取动态HTML页面

    一般的的静态HTML页面可以使用requests等库直接抓取,但还有一部分比较复杂的动态页面,这些页面的DOM是动态生成的,有些还需要用户与其点击互动,这些页面只能使用真实的浏览器引擎动态解析,Sel ...

  6. js注意点:数组比较大小方法及数组与对象的区别

    (迁移自旧博客2017-04-19) 快速复制数组及数组比较大小方法 首先介绍一下复制数组的方法: var arr = ['A', 'B', 'C', 'D', 'E', 'F', 'G']; var ...

  7. C# 批量新增的两种方法。

    public class Test { private static readonly string strConnection = ""; public static void ...

  8. Go 基准测试

        文章转载地址:https://www.flysnow.org/2017/05/21/go-in-action-go-benchmark-test.html 什么是基准测试?      基准测试 ...

  9. Django project troubleshootings

    1. 当django project文件夹放到cgi-bin目录下面时会出现下面的错误: [Wed Jan 09 01:52:52.611690 2019] [core:notice] [pid 15 ...

  10. LeetCode 05 最长回文子串

    题目 给定一个字符串 s,找到 s 中最长的回文子串.你可以假设 s 的最大长度为 1000. 示例 1: 输入: "babad" 输出: "bab" 注意: ...