关于生成器,主要有以下几个 关键点的内容

一、什么是generator ,为什么要有generator?

二、两种创建生成器方式

三、yield关键字

四、generator 两个调用方法 next() 和send()

一、什么是generator ,为什么要有generator?

generator 是一种方式 ,是一种借助于循环,然后不断产生值的一种机制。(我是能理解机制这种描述,想了个例子来说明这个例子感觉又不对。)

那么为什么需要generator呢?一、 当你需要获取大量值的时候,我们可以将值存在列表里面,然后循环,读出没一个值。这没毛病。

但是你知道数组这种数据结构,他是将所有的值都紧挨着放在一块的,

当我们将这很多值,都放在内存中,主存是需要申请很大一块空间,

进行存放的,而我们的操作系统还要执行其他的任务,也要用到主存。这样将会导致操作RAM大量被占用,其他任何执行不了,或者干脆,其他任务执行完了,把地方让出来给你,你再去执行。以上的描述大家能感觉出来效率是非常低的。

可是我们有的时候就是需要啊,需要获取这种大量数据。(什么情况下,其实我写了几个项目现在也没有用到过generator,不过知道python的协程就是用生成器实现的。)而生成器他通过循环,计算出的数据,也就是说每循环一次就产生一次数据。这样是不需要向上面一样大量占用内存空间的,至于你说你需要计算啊(对于cpu来你这点代码量,简直就是连9牛一毛都称不上,这大兄弟可是每秒钟,能计算几十亿次)。

二、两种生成器的创建方式

1 、(x for x in range) ,就是将列表推到值外边的列表换成了元组。

2、函数中包含yield 关键字

def f1(n):
    yield n
obj = f1(1)
print(obj)

返回值是这个东西 <generator object f1 at 0x0000000001F1FFC0>
是一个生成器对象

  

三 、 yield 关键字

我们知道一个函数包含一个yield关键字 ,返回的就是一个generator ,那么这个yield关字是怎么运作的,他都有那些特性

请看如下代码,这个就是一个生产这消费者模型

def consumer():
    r = 'ok'
    while True:
        n1 = yield r
        while not n1:
            print('如果走了这里,说明,下一次调用之前先将上一次的NONE给赋值了')
        print('consumer consume %s'%(n1))
        r = '我不想吃包子,我想吃pizza'
def producer(c):
    data =c.send(None)
    print(data ,'到底一次yield有没有返回值')
    n=0
    while n <5:
        n+=1
        print('生产者生产了%s'%n)
        data_2=c.send(n)
        print('消费者其实想的是%s'%(data_2))
obj =consumer()
producer(obj)

  

我建议,如果你看了我的博客,可以复制一下代码去执行一下。就能总结出来yield关键字有如下特性:

1、yiled 关键字类似于return ,就是函数执行到这里后,就不在向下执行,然后返还一个返回值。但是(一提但是就要仔细看啊)当 执行到yield 关键字时,整个函数一个运行状态是还保存在内存,当下次再调用这个生成器时,会从yield开始,在向下执行,

而不是从函数开头从新执行一遍。然后循环到了yield 在卡住,等待下次再调用

2、yield 可以被传值,不过必须要通过send()方法

四、generator 两个调用方法 next() 和send()

我们一直在强调,generator 是借助于循环,不断产生新的值,所以就能理解 ,一般一个生成器都应该是一个循环中被调用,产生一个新的值。

所以

def f1(n):
    while True:
        n +=1
        yield n
obj = f1(1)

for i in obj:
    print(i)

你可尝试一下,无限循环的感觉。

  

当然一般情况下,不会是无限循环 ,肯定是有一个终止条件的。

如下

def f1(n):
    while n<5:
        n +=1
        yield n
obj = f1(1)

j =0
while j<5:
    j+=1
    try:
        print(next(obj))
    except StopIteration as e:
        print('别调用了,最多能计算这么多')

当生成器已经计算结束后,你在去调用会报错的 ,如果是直接用for 调用是不会报错的。其实for 结构里面就类似上面的代码,只是当循环完generator后,抓去了对应的异常。结束循环。

  

最后则是send 方法 , 而send 方法,他有两个作用,第一个是可以调用这个generator计算,第二个就是给yield赋值,在将上面的代码赋值一下

def consumer():
    r = 'ok'
    while True:
        n1 = yield r
        while not n1:
            print('如果走了这里,说明,下一次调用之前先将上一次的NONE给赋值了')
        print('consumer consume %s'%(n1))
        r = '我不想吃包子,我想吃pizza'
def producer(c):
    data =c.send(None)
    print(data ,'到底一次yield有没有返回值')
    n=0
    while n <5:
        n+=1
        print('生产者生产了%s'%n)
        data_2=c.send(n)
        print('消费者其实想的是%s'%(data_2))
obj =consumer()
producer(obj)

  关于send 方法有一个特性,就是在第一次启动生成器的时候,要传一个None,或者先用next调用一下。原因是,当第一次走到yield的时候,yield 直接将会返回值返回,然后这次执行就停掉了,并没有发生赋值的操作,所以你传进来一个值,是没有效果的所以python的源码里面就做了处理。而第二次在在用send唤醒generaot ,send方法在传一个值,在将这个值传给yield 关键字。然后yield在赋值,然后整个函数再向下运行。

还有个小点,就是在函数调用,生成一个generatro对象时,函数是什么执行的,只有在被调用,或者被for循环时,才开始执行。

python 生成器generator的更多相关文章

  1. Python 生成器 (generator) & 迭代器 (iterator)

    python 生成器 & 迭代器 生成器 (generator) 列表生成式 列表生成式用来生成一个列表,虽然写的是表达式,但是储存的是计算出来的结果,因此生成的列表受到内存大小的限制 示例: ...

  2. 【python之路29】python生成器generator与迭代器

    一.python生成器 python生成器原理: 只要函数中存在yield,则函数就变为生成器函数 #!usr/bin/env python # -*- coding:utf-8 -*- def xr ...

  3. python生成器(generator)、迭代器(iterator)、可迭代对象(iterable)区别

    三者联系 迭代器(iterator)是一个更抽象的概念,任何对象,如果它的类有next方法(next python3)和__iter__方法返回自己本身,即为迭代器 通常生成器是通过调用一个或多个yi ...

  4. python 生成器 generator

    一.生成器定义 通过列表生成表达式,我们可以直接创建一个列表.但是,受到内存限制,列表容量肯定是有限的.所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢? ...

  5. Python 生成器 Generator 和迭代器 Iterator

    #最近一周刚开始接触python,基本的语法,和使用特性和Java差别还是蛮大的. 今天接触到Python的迭代器和生成器有点不是很明白,所以搜索了先关资料整理了一些自己的理解和心得 简述(Profi ...

  6. python 生成器(generator)的生成方式

    generator包括生成器和带yield的generator函数. 写了一个生成杨辉三角的小例子: # -*- coding:utf-8 -*- def triangles(): l = [1] w ...

  7. 【转】 Python生成器generator之next和send运行流程

    原文链接:https://blog.csdn.net/pfm685757/article/details/49924099 对于普通的生成器,第一个next调用,相当于启动生成器,会从生成器函数的第一 ...

  8. Python进阶内容(四)--- 迭代器(Iterator)与生成器(Generator)

    迭代器 我们已经知道,可以直接作用于for循环的数据类型有以下几种: 一类是集合数据类型,如list.tuple.dict.set.str等: 一类是generator,包括生成器和带yield的ge ...

  9. Python学习笔记 - 生成器generator

    #!/usr/bin/env python3 # -*- coding: utf-8 -*- # generator 生成器 L = [x * x for x in range(10)] print( ...

随机推荐

  1. postgreSql 常用操作总结

    0. 启动pgsl数据库 pg_ctl -D /xx/pgdata start 1. 查看pgsl版本 pg_ctl --version 1. 命令行登录数据库 psql -U username -d ...

  2. scala使用slick查询的全过程(使用cass class)

    1. 首先导包 <dependency> <groupId>com.typesafe.slick</groupId> <artifactId>slick ...

  3. 两个Html页面之间值得传递

    传值的页面:<a href='stockProductInfo.html?prdId="+v.prdID+"' target='_blank'></html> ...

  4. JAVA进阶5

    间歇性混吃等死,持续性踌躇满志系列-------------第5天 1.IDEA常用快捷键 2.简单方法的使用 package cn.intcast.day05.demo01; public clas ...

  5. 基于 Webhooks gitlab 自动化构建

    基于gitlab webhooks 自动构建流程 1.服务器安装 git 服务 安装成功 配置 PHP 脚本: <?php // 接受头部信息 if (!isset($_GET['youpara ...

  6. JQuery EasyUI 表单

    EasyUI 创建异步提交表单 ♦ 通过使用 easyui 表单插件来改变表单为 ajax表单. 表单提交所有字段到后台服务器,服务器处理和发送一些数据返回到前端页面.我们接收返回数据,并将它显示出来 ...

  7. TCP-IP详解学习笔记1

    TCP-IP详解学习笔记1 网关可以在互不相关的网络之间提供翻译功能: 体系结构: 协议和物理实现,实际上是一组设计决策. TCP/IP协议族允许计算机,智能手机,嵌入式设备之间通信: TCP/IP是 ...

  8. ActiveMQ:使用Python访问ActiveMQ

    Windows 10家庭中文版,Python 3.6.4,stomp.py 4.1.21 ActiveMQ支持Python访问,提供了基于STOMP协议(端口为61613)的库. ActiveMQ的官 ...

  9. linux redis 主从复制

    在从服务的redis.conf 添加 slaveof 主服务器 端口 查看reids进程和端口,都是存在的.只是ip地址是127.0.0.1而不是0.0.0.0,只是本机能使用; 查找redis的配置 ...

  10. 做GUI的随笔

    用的SDL库 官方网站是:https://littlevgl.com/   改网站需要FQ 字库制作网站: https://debugdump.com/t_771.html