Tensorflow基本操作理解
node1 = tf.constant(3.0, dtype=tf.float32)
node2 = tf.constant(4.0)# also tf.float32 implicitly
print(node1, node2)
最后打印结果是:
Tensor("Const:0", shape=(), dtype=float32) Tensor("Const_1:0",shape=(), dtype=float32)
要想打印最终结果,我们必须用到session:一个session封装了TensorFlow运行时的控制和状态
sess = tf.Session()
print(sess.run([node1, node2]))
我们可以组合Tensor节点操作(操作仍然是一个节点)来构造更加复杂的计算,
node3 = tf.add(node1, node2)
print("node3:", node3)
print("sess.run(node3):", sess.run(node3))
打印结果是:
node3:Tensor("Add:0", shape=(), dtype=float32)
sess.run(node3):7.0
3. TensorFlow提供一个统一的调用称之为TensorBoard,它能展示一个计算图的图片;如下面这个截图就展示了这个计算图
4 一个计算图可以参数化的接收外部的输入,作为一个placeholders(占位符),一个占位符是允许后面提供一个值的。
a = tf.placeholder(tf.float32)
b = tf.placeholder(tf.float32)
adder_node = a + b # + provides a shortcut for tf.add(a, b)
print(sess.run(adder_node, {a:3, b:4.5}))
print(sess.run(adder_node, {a: [1,3], b: [2,4]}))
结果是:
7.5
[3. 7.]
在TensorBoard,计算图类似于这样:
我们可以增加另外的操作来让计算图更加复杂,比如
add_and_triple = adder_node *3.
print(sess.run(add_and_triple, {a:3, b:4.5}))
输出结果是:
22.5
5 要实现初始化所有全局变量的TensorFlow子图的的处理是很重要的,直到我们调用sess.run,这些变量都是未被初始化的。既然x是一个占位符,我们就可以同时地对多个x的值进行求值linear_model,例如:
W = tf.Variable([.3], dtype=tf.float32)
b = tf.Variable([-.3], dtype=tf.float32)
x = tf.placeholder(tf.float32)
linear_model = W*x + b
init = tf.global_variables_initializer()
sess.run(init)
print(sess.run(linear_model, {x: [1,2,3,4]}))
求值linear_model
输出为
[0. 0.30000001 0.60000002 0.90000004]
Tensorflow基本操作理解的更多相关文章
- TF Boys (TensorFlow Boys ) 养成记(一):TensorFlow 基本操作
本资料是在Ubuntu14.0.4版本下进行,用来进行图像处理,所以只介绍关于图像处理部分的内容,并且默认TensorFlow已经配置好,如果没有配置好,请参考官方文档配置安装,推荐用pip安装.关于 ...
- Tensorflow从入门到精通之——Tensorflow基本操作
前边的章节介绍了什么是Tensorflow,本节将带大家真正走进Tensorflow的世界,学习Tensorflow一些基本的操作及使用方法.同时也欢迎大家关注我们的网站和系列教程:http://ww ...
- 【TensorFlow】理解tf.nn.conv2d方法 ( 附代码详解注释 )
最近在研究学习TensorFlow,在做识别手写数字的demo时,遇到了tf.nn.conv2d这个方法,查阅了官网的API 发现讲得比较简略,还是没理解.google了一下,参考了网上一些朋友写得博 ...
- 深度学习原理与框架-Tensorflow基本操作-mnist数据集的逻辑回归 1.tf.matmul(点乘操作) 2.tf.equal(对应位置是否相等) 3.tf.cast(将布尔类型转换为数值类型) 4.tf.argmax(返回最大值的索引) 5.tf.nn.softmax(计算softmax概率值) 6.tf.train.GradientDescentOptimizer(损失值梯度下降器)
1. tf.matmul(X, w) # 进行点乘操作 参数说明:X,w都表示输入的数据, 2.tf.equal(x, y) # 比较两个数据对应位置的数是否相等,返回值为True,或者False 参 ...
- 深度学习原理与框架-Tensorflow基本操作-实现线性拟合
代码:使用tensorflow进行数据点的线性拟合操作 第一步:使用np.random.normal生成正态分布的数据 第二步:将数据分为X_data 和 y_data 第三步:对参数W和b, 使用t ...
- 深度学习原理与框架-Tensorflow基本操作-变量常用操作 1.tf.random_normal(生成正态分布随机数) 2.tf.random_shuffle(进行洗牌操作) 3. tf.assign(赋值操作) 4.tf.convert_to_tensor(转换为tensor类型) 5.tf.add(相加操作) tf.divide(相乘操作) 6.tf.placeholder(输入数据占位
1. 使用tf.random_normal([2, 3], mean=-1, stddev=4) 创建一个正态分布的随机数 参数说明:[2, 3]表示随机数的维度,mean表示平均值,stddev表示 ...
- 深度学习原理与框架-Tensorflow基本操作-Tensorflow中的变量
1.tf.Variable([[1, 2]]) # 创建一个变量 参数说明:[[1, 2]] 表示输入的数据,为一行二列的数据 2.tf.global_variables_initializer() ...
- tensorflow基本操作介绍
1.tensorflow的基本运作 为了快速的熟悉TensorFlow编程,下面从一段简单的代码开始: import tensorflow as tf #定义‘符号’变量,也称为占位符 a = tf. ...
- tensorflow reduction_indices理解
在tensorflow的使用中,经常会使用tf.reduce_mean,tf.reduce_sum等函数,在函数中,有一个reduction_indices参数,表示函数的处理维度,直接上图,一目了然 ...
随机推荐
- .NET MVC 简单的插件式开发
插件式开发的优势 1.提高软件的复用度 2.提高软件开发的并行性 3.缩短软件的研发周期.节约研发成本,带给程序开发人员更多的灵活性,产品在软件发布以后还可以添加新的插件和完善已有的功能. 4.方便软 ...
- 第一个Web应用
这篇文章演示如何使用ASP.NET Core创建第一个web api服务. 开始 新建一个Project. 选择模板'ASP.NET Core Web应用程序',并且输入解决方案名称和项目名称. 然后 ...
- vue遍历数组和对象的方法以及他们之间的区别
前言:vue不能直接通过下标的形式来添加数据,vue也不能直接向对象中插值,因为那样即使能插入值,页面也不会重新渲染数据 一,vue遍历数组 1,使用vue数组变异方法 pop() 删除数组最后一 ...
- 林业有害生物监测系统(重庆宇创GIS)
本文由重庆宇创GIS团队原创,转载请注明来源http://www.cnblogs.com/ycdigit/p/8916073.html 一.概述 林业有害生物监测信息平台(森林病虫害监测预警系统) ...
- 2018年IOS/Android UI设计规范
更多参考: 2017最新设计尺寸及规范 UI : 2018年IOS/Android UI设计规范 转载:https://www.jianshu.com/p/03e5cdd4ffd6
- C#字符串倒置函数的代码
把内容过程比较常用的内容珍藏起来,下边内容内容是关于C#字符串倒置函数的内容. public static string Reverse(string ReverseString) { String ...
- [Android framework学习] ViewGroup的addView函数分析
博客首页:http://www.cnblogs.com/kezhuang/p/ Android中整个的View的组装是采用组合模式. ViewGroup就相当与树根,各种Layout就相当于枝干,各种 ...
- Servlet是否单例?
1,测试环境: Java SE版本:1.8.0_161(AMD64) Tomcat版本:9.0.7(AMD64) 2,试验 (1)编写HelloServlet. 由于测试代码很简单,此处只列出doGe ...
- 5.6Python数据处理篇之Sympy系列(六)---矩阵的操作
目录 目录 前言 (一)矩阵的创建-Matrix() 1.说明: 2.源代码: 3.输出: (二)常用的构造矩阵 1.说明: 2.源代码: 3.输出: (三)基本操作 1.说明: 2.源代码: 3.输 ...
- 我的第一个python web开发框架(33)——接口代码重构
前面ORM模块我们已经完成了开发,接下来要做的就是对项目代码进行重构了.因为对底层数据库操作模块(db_helper.py)进行了改造,之前项目的接口代码全都跑不起来了. 在写ORM模块时,我们已经对 ...