Tensorflow基本操作理解
node1 = tf.constant(3.0, dtype=tf.float32)
node2 = tf.constant(4.0)# also tf.float32 implicitly
print(node1, node2)
最后打印结果是:
Tensor("Const:0", shape=(), dtype=float32) Tensor("Const_1:0",shape=(), dtype=float32)
要想打印最终结果,我们必须用到session:一个session封装了TensorFlow运行时的控制和状态
sess = tf.Session()
print(sess.run([node1, node2]))
我们可以组合Tensor节点操作(操作仍然是一个节点)来构造更加复杂的计算,
node3 = tf.add(node1, node2)
print("node3:", node3)
print("sess.run(node3):", sess.run(node3))
打印结果是:
node3:Tensor("Add:0", shape=(), dtype=float32)
sess.run(node3):7.0
3. TensorFlow提供一个统一的调用称之为TensorBoard,它能展示一个计算图的图片;如下面这个截图就展示了这个计算图
4 一个计算图可以参数化的接收外部的输入,作为一个placeholders(占位符),一个占位符是允许后面提供一个值的。
a = tf.placeholder(tf.float32)
b = tf.placeholder(tf.float32)
adder_node = a + b # + provides a shortcut for tf.add(a, b)
print(sess.run(adder_node, {a:3, b:4.5}))
print(sess.run(adder_node, {a: [1,3], b: [2,4]}))
结果是:
7.5
[3. 7.]
在TensorBoard,计算图类似于这样:
我们可以增加另外的操作来让计算图更加复杂,比如
add_and_triple = adder_node *3.
print(sess.run(add_and_triple, {a:3, b:4.5}))
输出结果是:
22.5
5 要实现初始化所有全局变量的TensorFlow子图的的处理是很重要的,直到我们调用sess.run,这些变量都是未被初始化的。既然x是一个占位符,我们就可以同时地对多个x的值进行求值linear_model,例如:
W = tf.Variable([.3], dtype=tf.float32)
b = tf.Variable([-.3], dtype=tf.float32)
x = tf.placeholder(tf.float32)
linear_model = W*x + b
init = tf.global_variables_initializer()
sess.run(init)
print(sess.run(linear_model, {x: [1,2,3,4]}))
求值linear_model
输出为
[0. 0.30000001 0.60000002 0.90000004]
Tensorflow基本操作理解的更多相关文章
- TF Boys (TensorFlow Boys ) 养成记(一):TensorFlow 基本操作
本资料是在Ubuntu14.0.4版本下进行,用来进行图像处理,所以只介绍关于图像处理部分的内容,并且默认TensorFlow已经配置好,如果没有配置好,请参考官方文档配置安装,推荐用pip安装.关于 ...
- Tensorflow从入门到精通之——Tensorflow基本操作
前边的章节介绍了什么是Tensorflow,本节将带大家真正走进Tensorflow的世界,学习Tensorflow一些基本的操作及使用方法.同时也欢迎大家关注我们的网站和系列教程:http://ww ...
- 【TensorFlow】理解tf.nn.conv2d方法 ( 附代码详解注释 )
最近在研究学习TensorFlow,在做识别手写数字的demo时,遇到了tf.nn.conv2d这个方法,查阅了官网的API 发现讲得比较简略,还是没理解.google了一下,参考了网上一些朋友写得博 ...
- 深度学习原理与框架-Tensorflow基本操作-mnist数据集的逻辑回归 1.tf.matmul(点乘操作) 2.tf.equal(对应位置是否相等) 3.tf.cast(将布尔类型转换为数值类型) 4.tf.argmax(返回最大值的索引) 5.tf.nn.softmax(计算softmax概率值) 6.tf.train.GradientDescentOptimizer(损失值梯度下降器)
1. tf.matmul(X, w) # 进行点乘操作 参数说明:X,w都表示输入的数据, 2.tf.equal(x, y) # 比较两个数据对应位置的数是否相等,返回值为True,或者False 参 ...
- 深度学习原理与框架-Tensorflow基本操作-实现线性拟合
代码:使用tensorflow进行数据点的线性拟合操作 第一步:使用np.random.normal生成正态分布的数据 第二步:将数据分为X_data 和 y_data 第三步:对参数W和b, 使用t ...
- 深度学习原理与框架-Tensorflow基本操作-变量常用操作 1.tf.random_normal(生成正态分布随机数) 2.tf.random_shuffle(进行洗牌操作) 3. tf.assign(赋值操作) 4.tf.convert_to_tensor(转换为tensor类型) 5.tf.add(相加操作) tf.divide(相乘操作) 6.tf.placeholder(输入数据占位
1. 使用tf.random_normal([2, 3], mean=-1, stddev=4) 创建一个正态分布的随机数 参数说明:[2, 3]表示随机数的维度,mean表示平均值,stddev表示 ...
- 深度学习原理与框架-Tensorflow基本操作-Tensorflow中的变量
1.tf.Variable([[1, 2]]) # 创建一个变量 参数说明:[[1, 2]] 表示输入的数据,为一行二列的数据 2.tf.global_variables_initializer() ...
- tensorflow基本操作介绍
1.tensorflow的基本运作 为了快速的熟悉TensorFlow编程,下面从一段简单的代码开始: import tensorflow as tf #定义‘符号’变量,也称为占位符 a = tf. ...
- tensorflow reduction_indices理解
在tensorflow的使用中,经常会使用tf.reduce_mean,tf.reduce_sum等函数,在函数中,有一个reduction_indices参数,表示函数的处理维度,直接上图,一目了然 ...
随机推荐
- 浏览器与Node的事件循环(Event Loop)有何区别?
前言 本文我们将会介绍 JS 实现异步的原理,并且了解了在浏览器和 Node 中 Event Loop 其实是不相同的. 一.线程与进程 1. 概念 我们经常说 JS 是单线程执行的,指的是一个进程里 ...
- 22 , CSS 构造颜色、背景与图像
1. 设定颜色 2. 背景使用 3. 图像使用 1.设定颜色 红色的几种合法定义; #f00; #ff0000; Red; Rgb(255,0,0); Rgb(100%,0%,0%); 2.十六进制三 ...
- Dynamics 365新功能:可编辑的网格(行内编辑)
关注本人微信和易信公众号: 微软动态CRM专家罗勇 ,回复238或者20161127可方便获取本文,同时可以在第一间得到我发布的最新的博文信息,follow me!我的网站是 www.luoyong. ...
- ArcGIS API for JavaScript 4.2学习笔记[20] 使用缓冲区结合Query对象进行地震点查询【重温异步操作思想】
这个例子相当复杂.我先简单说说这个例子是干啥的. 在UI上,提供了一个下拉框.两个滑动杆,以确定三个参数,使用这三个参数进行空间查询.这个例子就颇带空间查询的意思了. 第一个参数是油井类型,第二个参数 ...
- Snapde怎么添加行和列
Snapde,一个专门为编辑超大型数据量CSV文件而设计的单机版电子表格软件:它运行的速度非常快,反应非常灵敏.那么它是如何添加行列的呢? 它有三种方法可以添加: 1.在编辑下拉菜单下找到设置行列数菜 ...
- 从Linux上传到Git过程
1.1 实验内容 本次课程讲的是在实验楼的在线环境中,如何使用 Github 去管理在在线环境中使用的代码.配置.资源等实验相关文件,怎样去添加.同步和下拉在远程仓库中的实验文件,以此来维持自身的实验 ...
- Visual Studio无法调试
一.最近Visual studio调试不起来,运行完报错 二.解决方法 打开 调试>>>>选项>>>>常规>>>对ASP.NET启用 ...
- webmagic 基本的方法
WebMagic的结构分为Downloader.PageProcessor.Scheduler.Pipeline四大组件,并由Spider将它们彼此组织起来.这四大组件对应爬虫生命周期中的下载.处理. ...
- selenium-历史(一)
简介 Selenium是ThoughtWorks公司研发的一个强大的基于浏览器的开源自动化测试工具,它通常用来编写web应用的自动化测试.早期也即Selenium1.x时期主要使用Selenium R ...
- 启动期间的内存管理之引导分配器bootmem--Linux内存管理(十)
在内存管理的上下文中, 初始化(initialization)可以有多种含义. 在许多CPU上, 必须显式设置适用于Linux内核的内存模型. 例如在x86_32上需要切换到保护模式, 然后内核才能检 ...