本学期将继续进行高等代数每周一题的活动。计划从第一教学周开始,到第十五教学周结束,每周的周末公布一道思考题(预计15道),供大家思考和解答。每周一题将通过“高等代数官方博客”(以博文的形式)和“高等代数在线课程18级课群”(以课群话题的形式)这两个渠道同时发布。有兴趣的同学可以将每周一题的解答写在纸上、拍成图片,并上传到每周一题对应的课群话题中。本人会对每周一题的解答进行批改和评价,并将优秀解答标记出来推荐给全班同学。

[问题2019S01]  设 $A$ 为 $n$ 阶复方阵, 满足 $(A')^m=A^k$, 其中 $m,k$ 是互异的正整数. 证明: $A$ 的特征值为 $0$ 或单位根.

[问题2019S02]  设 $V$ 为二维实线性空间, $\varphi,\psi$ 是 $V$ 上两个非零线性变换, 满足 $\varphi\psi+\psi\varphi=0$. 证明: 若 $V$ 只有平凡的 $\varphi-$不变子空间, 则 $V$ 必有非平凡的 $\psi-$不变子空间.

[问题2019S03]  设 $n\,(n\geq 2)$ 阶方阵 $A=\begin{pmatrix} 0 & a & a & \cdots & a & a \\ b & 0 & a & \cdots & a & a \\ b & b & 0 & \cdots & a & a \\ b & b & b & \cdots & 0 & a \\ b & b & b & \cdots & b & 0 \\ \end{pmatrix}$, 其中 $a,b$ 是复数. 试求 $A$ 可对角化的充要条件.

[问题2019S04]  设 $A,B$ 为 $n$ 阶方阵, 满足: $A^2-2AB+B^2=0$.

(1) 若 $n=2$, 证明: $AB=BA$;

(2) 若 $n\geq 3$, 举例说明: $AB=BA$ 不一定成立.

[问题2019S05]  设 $A$ 为数域 $K$ 上的 $n$ 阶方阵或具有相同行列分块方式的分块矩阵.

(1) 证明: 以下三种变换都是相似变换, 称为相似初等变换:

(1.1) 对换 $A$ 的第 $i$ 行与第 $j$ 行, 再对换第 $i$ 列与第 $j$ 列;

(1.2) $A$ 的第 $i$ 行乘以非零常数 $c\in K$, 第 $i$ 列乘以 $c^{-1}$;

(1.3) $A$ 的第 $i$ 行乘以常数 $c\in K$ 加到第 $j$ 行上, 第 $j$ 列乘以 $-c$ 加到第 $i$ 列上.

(2) 证明: 任一相似变换都是若干次相似初等变换的复合.

(3) 证明: 以下三种变换都是相似变换, 称为相似分块初等变换:

(3.1) 对换 $A$ 的第 $i$ 分块行与第 $j$ 分块行, 再对换第 $i$ 分块列与第 $j$ 分块列;

(3.2) $A$ 的第 $i$ 分块行左乘非异阵 $M$, 第 $i$ 分块列右乘 $M^{-1}$;

(3.3) $A$ 的第 $i$ 分块行左乘矩阵 $M$ 加到第 $j$ 分块行上, 第 $j$ 分块列右乘 $-M$ 加到第 $i$ 分块列上.

[问题2019S06]  设 $A\in M_n(K)$, $B\in M_{n\times m}(K)$, 分块矩阵 $(B,AB,\cdots,A^{n-2}B,A^{n-1}B)$ 的秩为 $r$. 证明: 存在可逆阵 $P\in M_n(K)$, 使得 $$P^{-1}AP=\begin{pmatrix} A_{11} & A_{12} \\ 0 & A_{22} \\ \end{pmatrix},\,\,\,\,P^{-1}B=\begin{pmatrix} B_1 \\ 0 \\ \end{pmatrix},$$ 其中 $A_{11}\in M_r(K)$, $B_1\in M_{r\times m}(K)$.

[问题2019S07]  设 $A,B,C$ 是 $n$ 阶复矩阵, 满足: $C=AB-BA$, $AC=CA$, $BC=CB$.

(1) 请用 Jordan 标准型理论证明: $C$ 的特征值全为零;

(2) 设 $m_A(\lambda),m_B(\lambda)$ 分别是 $A,B$ 的极小多项式, $k=\min\{\deg m_A(\lambda),\deg m_B(\lambda),n-1\}$, 证明: $C^k=0$.

[问题2019S08]  设 $n$ 阶复矩阵 $A$ 满足: 对任意的正整数 $k$, $\mathrm{tr}(A^k)=r(A)$, 证明: 对任意的正整数 $k$, $A$ 与 $A^k$ 都相似.

[问题2019S09]  设 $A$ 为 $n$ 阶复方阵, $\theta_0$ 是 $\cos x=x$ 在 $(0,\dfrac{\pi}{2})$ 中的唯一解. 证明: 若 $A$ 的特征值全为 $\theta_0$, 则 $A$ 相似于 $\cos A$.

[问题2019S10]  设 $A=(a_{ij})$ 为 $n$ 阶实对称阵, 证明: $A$ 为半正定阵的充要条件是对任意的 $n$ 阶半正定实对称阵 $B=(b_{ij})$, 都有 $\sum\limits_{i=1}^n\sum\limits_{j=1}^na_{ij}b_{ij}\geq 0$ 成立.

复旦高等代数II(18级)每周一题的更多相关文章

  1. [问题2014S12] 复旦高等代数II(13级)每周一题(第十二教学周)

    [问题2014S12]  设 \(A,B\) 都是 \(n\) 阶半正定实对称阵, 证明: \(AB\) 的所有特征值都是非负实数. 进一步, 若 \(A,B\) 都是正定实对称阵, 证明: \(AB ...

  2. 复旦高等代数 II(17级)每周一题

    本学期将继续进行高等代数每周一题的活动.计划从第一教学周开始,到第十六教学周为止(根据法定节假日安排,中间个别周会适当地停止),每周的周末将公布1道思考题(共16道),供大家思考和解答.每周一题通过“ ...

  3. 复旦高等代数II(16级)每周一题

    每周一题的说明 一.本学期高代II的每周一题面向16级的同学,将定期更新(一般每周的周末公布下一周的题目); 二.欢迎16级的同学通过微信或书面方式提供解答图片或纸质文件给我,优秀的解答可以分享给大家 ...

  4. [问题2014S06] 复旦高等代数II(13级)每周一题(第六教学周)

    [问题2014S06]  试用有理标准型理论证明13级高等代数I期末考试最后一题: 设 \(V\) 为数域 \(K\) 上的 \(n\) 维线性空间,  \(\varphi\) 为 \(V\) 上的线 ...

  5. 复旦高等代数 II(15级)每周一题

    [问题2016S01]  设 $f(x)=x^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0$ 是整系数首一多项式, 满足: $|a_0|$ 是素数且 $$|a_0|>1+\s ...

  6. [问题2015S01] 复旦高等代数 II(14级)每周一题(第二教学周)

    [问题2015S01]  设 \(M_n(\mathbb{R})\) 是 \(n\) 阶实方阵全体构成的实线性空间, \(\varphi\) 是 \(M_n(\mathbb{R})\) 上的线性变换, ...

  7. [问题2015S13] 复旦高等代数 II(14级)每周一题(第十四教学周)

    [问题2015S13]  设 \(A=(a_{ij})\) 为 \(n\) 阶实矩阵, 定义函数 \[f(A)=\sum_{i,j=1}^na_{ij}^2.\] 设 \(P\) 为 \(n\) 阶非 ...

  8. [问题2014S01] 复旦高等代数II(13级)每周一题(第一教学周)

    问题2014S01  设 \(f(x_1,x_2,\cdots,x_n)\) 是次数等于 2 的 \(n\) 元实系数多项式, \(S\) 是使得 \(f(x_1,x_2,\cdots,x_n)\) ...

  9. [问题2014S03] 复旦高等代数II(13级)每周一题(第三教学周)

    [问题2014S03]  设 \(A\in M_n(\mathbb R)\) 是非异阵并且 \(A\) 的 \(n\) 个特征值都是实数. 若 \(A\) 的所有 \(n-1\) 阶主子式之和等于零, ...

随机推荐

  1. C#开发问题汇总

    问题1:HTTP 错误 500.21 - Internal Server Error处理程序“NickLeeCallbackHandler”在其模块列表中有一个错误模块“ManagedPipeline ...

  2. spark优化参数调节和故障参数调节

    1:“物尽其用”,但给spark分配多个机器后,先需配置spark-submit shell如下: /usr/local/spark/bin/spark-submit \ --class com.sp ...

  3. 核心思想:决定你是富人还是穷人的11条标准(有强烈的赚钱意识,这也是他血液里的东西,太精彩了)good

    原文地址:决定你是富人还是穷人的11条标准作者:谢仲华 1.自我认知 穷人:很少想到如何去赚钱和如何才能赚到钱,认为自己一辈子就该这样,不相信会有什么改变. 富人:骨子里就深信自己生下来不是要做穷人, ...

  4. 《图解HTTP》读书笔记(一:网络基础TCP/IP)

    好书什么时候开始读都不晚.作为一个测试人员,是一定要掌握一些网络的基础知识的.希望能够边读书边在这里记录笔记,便于加深理解以及日后查阅. 一.TCP/IP协议族 计算机与网络设备要互相通信,双方必须基 ...

  5. defaultdict(list)

  6. 利用dladdr来获得so自身的路径

    #include <dlfcn.h> //定义该函数为了dladdr获取符号信息 void fun1() { } Dl_info info; //dladdr获取某个地址的符号信息 int ...

  7. 18. C# 转换

    1.重载转换运算符 到目前为止,我们使用的类型转换,包括隐式类型转换和显示类型转换都是在两个相关的类中进行的,这几个类要么是简单类型之间的转换,比如int 隐式转换成double,要么是有继承关系,或 ...

  8. c# 设置开机启动

    private static RegistryKey _rlocal = Registry.LocalMachine.CreateSubKey(@"SOFTWARE\Microsoft\Wi ...

  9. 当安全遇到java

    标题是随便取的 今天看到有篇文章写的是关于java的xss,文中还提到了一个面试题,刚好我曾经也被问到过这个问题.让我不禁想起以往遇到的一些和java相关的安全面试题. 现如今,很多大甲方,由于自己系 ...

  10. 551.学生出勤记录I

    /* * @lc app=leetcode.cn id=551 lang=java * * [551] 学生出勤记录 I * * https://leetcode-cn.com/problems/st ...