边框回归(bounding-Box regression)
转自:https://blog.csdn.net/zijin0802034/article/details/77685438
- 为什么要边框回归?
- 什么是边框回归?
- 边框回归怎么做的?
- 边框回归为什么宽高,坐标会设计这种形式?
- 为什么边框回归只能微调,在离Ground Truth近的时候才能生效?
1、为什么要边框回归?
对于上图,绿色的框表示Ground Truth, 红色的框为Selective Search提取的Region Proposal。那么即便红色的框被分类器识别为飞机,但是由于红色的框定位不准(IoU<0.5), 那么这张图相当于没有正确的检测出飞机。 如果我们能对红色的框进行微调, 使得经过微调后的窗口跟Ground Truth 更接近, 这样岂不是定位会更准确。 确实,Bounding-box regression 就是用来微调这个窗口的。
2、边框回归是什么?
对于窗口一般使用四维向量(x,y,w,h) 来表示, 分别表示窗口的中心点坐标和宽高。 对于图 2, 红色的框 P 代表原始的Proposal, 绿色的框 G 代表目标的 Ground Truth, 我们的目标是寻找一种关系使得输入原始的窗口 P 经过映射得到一个跟真实窗口 G 更接近的回归窗口G^G^。
边框回归的目的既是:给定(Px,Py,Pw,Ph)寻找一种映射f, 使得f(Px,Py,Pw,Ph)=(Gx^,Gy^,Gw^,Gh^) 并且(Gx^,Gy^,Gw^,Gh^)≈(Gx,Gy,Gw,Gh)
3、边框回归是怎么做的?
那么经过何种变换才能从图 2 中的窗口 P 变为窗口G^G^呢? 比较简单的思路就是: 平移+尺度放缩
4、为什么宽高尺度会设计这种形式?
这边我重点解释一下为什么设计的tx,tytx,ty为什么除以宽高,为什么tw,thtw,th会有log形式!!!
首先CNN具有尺度不变性, 以图3为例:
x,y 坐标除以宽高
上图的两个人具有不同的尺度,因为他都是人,我们得到的特征相同。假设我们得到的特征为ϕ1,ϕ2,那么一个完好的特征应该具备ϕ1=ϕ。ok,如果我们直接学习坐标差值,以x坐标为例,xi,pi分别代表第i个框的x坐标,学习到的映射为ff, f(ϕ1)=x1−p1,同理f(ϕ2)=x2−p2。从上图显而易见,x1−p1≠x2−p1。也就是说同一个x对应多个y,这明显不满足函数的定义。边框回归学习的是回归函数,然而你的目标却不满足函数定义,当然学习不到什么。
宽高坐标Log形式
我们想要得到一个放缩的尺度,也就是说这里限制尺度必须大于0。我们学习的tw,th怎么保证满足大于0呢?直观的想法就是EXP函数,如公式(3), (4)所示,那么反过来推导就是Log函数的来源了。
5、为什么IoU较大,认为是线性变换?
当输入的 Proposal 与 Ground Truth 相差较小时(RCNN 设置的是 IoU>0.6), 可以认为这种变换是一种线性变换, 那么我们就可以用线性回归来建模对窗口进行微调, 否则会导致训练的回归模型不 work(当 Proposal跟 GT 离得较远,就是复杂的非线性问题了,此时用线性回归建模显然不合理)。这里我来解释:
Log函数明显不满足线性函数,但是为什么当Proposal 和Ground Truth相差较小的时候,就可以认为是一种线性变换呢?大家还记得这个公式不?参看高数1。
现在回过来看公式(8):
当且仅当的时候,才会是线性函数,也就是宽度和高度必须近似相等。
边框回归(bounding-Box regression)的更多相关文章
- [转载]边框回归(Bounding Box Regression)
[转载]边框回归(Bounding Box Regression) 许多模型中都应用到了这种方法来调整piror使其和ground truth尽量接近,例如之前自己看过的SSD模型 这篇文章写的很好, ...
- 边框回归(Bounding Box Regression)详解
原文地址:http://blog.csdn.net/zijin0802034/article/details/77685438 Bounding-Box regression 最近一直看检测有关的Pa ...
- [转]边框回归(Bounding Box Regression)详解
https://blog.csdn.net/zijin0802034/article/details/77685438 Bounding-Box regression 最近一直看检测有关的Paper, ...
- 【边框回归】边框回归(Bounding Box Regression)详解(转)
转自:打开链接 Bounding-Box regression 最近一直看检测有关的Paper, 从rcnn, fast rcnn, faster rcnn, yolo, r-fcn, ssd,到今年 ...
- 目标检测中bounding box regression
https://zhuanlan.zhihu.com/p/26938549 RCNN实际包含两个子步骤,一是对上一步的输出向量进行分类(需要根据特征训练分类器):二是通过边界回归(bounding-b ...
- 论文阅读笔记四十七:Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression(CVPR2019)
论文原址:https://arxiv.org/pdf/1902.09630.pdf github:https://github.com/generalized-iou 摘要 在目标检测的评测体系中,I ...
- 目标检测中的bounding box regression
目标检测中的bounding box regression 理解:与传统算法的最大不同就是并不是去滑窗检测,而是生成了一些候选区域与GT做回归.
- Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression
Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression 2019-05-20 19:3 ...
- 论文阅读笔记四十八:Bounding Box Regression with Uncertainty for Accurate Object Detection(CVPR2019)
论文原址:https://arxiv.org/pdf/1809.08545.pdf github:https://github.com/yihui-he/KL-Loss 摘要 大规模的目标检测数据集在 ...
随机推荐
- redis 基本原理及安装
一:什么是redis? Redis 是一个开源的,高性能的,基于键值对的缓存与存储系统.通过提供多种键值数据类型来适应不同场景下的缓存与存储需求. 二:redis数据库有什么优点? Redis数据库中 ...
- root用户无法访问Mysql数据库问题的解决
在使用Centos系统远程访问Mysql数据库的时候,系统提示报如下错误: Access Denied for User 'root'@'localhost' (using password: YES ...
- 基于 HTML5 的工业互联网云平台监控机房 U 位
前言 机柜 U 位管理是一项突破性创新技术--继承了 RFID 标签(电子标签)的优点的同时,完全解决了 RFID 技术(非接触式的自动识别技术)在机房 U 位资产监控场应用景中的四大缺陷,采用工业互 ...
- Grunt自动化构建环境搭建
1.环境准备 需要安装Git.Node.Bower.Grunt.Ruby NodeJS https://nodejs.org/en/ Ruby http://rubyinstaller.org/ ...
- 初识:java虚拟机的内存划分
什么是内存? 内存是计算机中的重要原件,临时存储区域,作用是运行程序.我们编写的程序是存放在硬盘中的,在硬盘中的程序是不会运行的,必须放进内存中才能运行,运行完毕后会清空内存.Java虚拟机要运行程序 ...
- Python @property 方法
考察 Student 类: class Student(object): def __init__(self, name, score): self.name = name self.score = ...
- idea2018.3.5永久破解教程
视频教程地址: http://v.youku.com/v_show/id_XNDEwNDU1NjQ4MA==.html 配套笔记: ①修改配置文件 -Xms128m -Xmx750m -XX:Rese ...
- BEX5下新建任务到待办任务
List<OrgUnit> list = new ArrayList<OrgUnit>(); // 1.查询出执行者 String sql = "select t.f ...
- Python——字符格式化
一.分类:%格式符方式,format方式 二.%格式符 1.%s——字符占位,%d——数字占位(十进制) a = ("%(name)s--%(age)d" % {'name':'x ...
- Windows 10 Update
services.msc Windows Update