一、UDP广播

广播UDP与单播UDP的区别就是IP地址不同,广播使用广播地址255.255.255.255,将消息发送到在同一广播网络上的每个主机。值得强调的是:本地广播信息是不会被路由器转发。当然这是十分容易理解的,因为如果路由器转发了广播信息,那么势必会引起网络瘫痪。这也是为什么IP协议的设计者故意没有定义互联网范围的广播机制。

广播地址通常用于在网络游戏中处于同一本地网络的玩家之间交流状态信息等。

  其实广播顾名思义,就是想局域网内所有的人说话,但是广播还是要指明接收者的端口号的,因为不可能接受者的所有端口都来收听广播。

二、UDP多播

1、多播(组播)的概念

  多播,也称为“组播”,将网络中同一业务类型主机进行了逻辑上的分组,进行数据收发的时候其数据仅仅在同一分组中进行,其他的主机没有加入此分组不能收发对应的数据。

  在广域网上广播的时候,其中的交换机和路由器只向需要获取数据的主机复制并转发数据。主机可以向路由器请求加入或退出某个组,网络中的路由器和交换机有选择地复制并传输数据,将数据仅仅传输给组内的主机。多播的这种功能,可以一次将数据发送到多个主机,又能保证不影响其他不需要(未加入组)的主机的其他通 信。

相对于传统的一对一的单播,多播具有如下的优点:

  1、具有同种业务的主机加入同一数据流,共享同一通道,节省了带宽和服务器的优点,具有广播的优点而又没有广播所需要的带宽。

  2、服务器的总带宽不受客户端带宽的限制。由于组播协议由接收者的需求来确定是否进行数据流的转发,所以服务器端的带宽是常量,与客户端的数量无关。

  3、与单播一样,多播是允许在广域网即Internet上进行传输的,而广播仅仅在同一局域网上才能进行。

组播的缺点:

  1、多播与单播相比没有纠错机制,当发生错误的时候难以弥补,但是可以在应用层来实现此种功能。

  2、多播的网络支持存在缺陷,需要路由器及网络协议栈的支持。

  3、多播的应用主要有网上视频、网上会议等。

2、广域网的多播

  多播的地址是特定的,D类地址用于多播。D类IP地址就是多播IP地址,即224.0.0.0至239.255.255.255之间的IP地址,并被划分为局部连接多播地址、预留多播地址和管理权限多播地址3类:

  1、局部多播地址:在224.0.0.0~224.0.0.255之间,这是为路由协议和其他用途保留的地址,路由器并不转发属于此范围的IP包。

  2、预留多播地址:在224.0.1.0~238.255.255.255之间,可用于全球范围(如Internet)或网络协议。

  3、管理权限多播地址:在239.0.0.0~239.255.255.255之间,可供组织内部使用,类似于私有IP地址,不能用于Internet,可限制多播范围。

多播的程序设计使用setsockopt()函数和getsockopt()函数来实现,组播的选项是IP层的,其选项值和含义参见11.5所示。

                                  表11.5 多播相关的选项

getsockopt()/setsockopt()的选项

含 义

IP_MULTICAST_TTL

设置多播组数据的TTL值

IP_ADD_MEMBERSHIP

在指定接口上加入组播组

IP_DROP_MEMBERSHIP

退出组播组

IP_MULTICAST_IF

获取默认接口或设置接口

IP_MULTICAST_LOOP

禁止组播数据回送

3、多播程序设计的框架

要进行多播的编程,需要遵从一定的编程框架。多播程序框架主要包含套接字初始化、设置多播超时时间、加入多播组、发送数据、接收数据以及从多播组中离开几个方面。其步骤如下:

(1)建立一个socket。

(2)然后设置多播的参数,例如超时时间TTL、本地回环许可LOOP等。

(3)加入多播组。

(4)发送和接收数据。

(5)从多播组离开。

三、UDP广播与单播

广播与单播的比较

  广播和单播的处理过程是不同的,单播的数据只是收发数据的特定主机进行处理,而广播的数据整个局域网都进行处理。

  例如在一个以太网上有3个主机,主机的配置如表11.4所示。

                                  表11.4 某局域网中主机的配置情况

主 机

A

B

C

IP地址

192.168.1.150

192.168.1.151

192.168.1.158

MAC地址

00:00:00:00:00:01

00:00:00:00:00:02

00:00:00:00:00:03

  单播流程:主机A向主机B发送UDP数据报,发送的目的IP为192.168.1.151,端口为 80,目的MAC地址为00:00:00:00:00:02。此数据经过UDP层、IP层,到达数据链路层,数据在整个以太网上传播,在此层中其他主机会 判断目的MAC地址。主机C的MAC地址为00:00:00:00:00:03,与目的MAC地址00:00:00:00:00:02不匹配,数据链路层 不会进行处理,直接丢弃此数据。

  主机B的MAC地址为00:00:00:00:00:02,与目的MAC地址00:00:00:00:00:02一致,此数据会经过IP层、UDP层,到达接收数据的应用程序。

  广播的流程:主机A向整个网络发送广播数据,发送的目的IP为192.168.1.255,端口为 80,目的MAC地址为FF:FF:FF:FF:FF:FF。此数据经过UDP层、IP层,到达数据链路层,数据在整个以太网上传播,在此层中其他主机会 判断目的MAC地址。由于目的MAC地址为FF:FF:FF:FF:FF:FF,主机C和主机B会忽略MAC地址的比较(当然,如果协议栈不支持广播,则 仍然比较MAC地址),处理接收到的数据。

  主机B和主机C的处理过程一致,此数据会经过IP层、UDP层,到达接收数据的应用程序。

UDP 单播、广播、多播的更多相关文章

  1. UDP单播、多播、广播

    一.UDP广播 广播使用的特殊的IP地址:最后一位是255时的IP地址是给广播预留的IP地址,如:192.168.88.255 广播UDP与单播UDP的区别就是IP地址不同,广播使用广播地址255.2 ...

  2. UDP 单播、广播和多播

    阅读目录(Content) 一.UDP广播 二.UDP多播 1.多播(组播)的概念 2.广域网的多播 三.UDP广播与单播 广播与单播的比较 使用UDP协议进行信息的传输之前不需要建议连接.换句话说就 ...

  3. udp单播,广播,多播实现(ReceiveFromAsync,SendToAsync)

    注意:客户端和服务器实现基本一致,本地host和port和多播的host和port可以一样 (1)多播 1.将本地host加入多播组中,只有加入多播组的成员才能接受同组的节点发送的多播 Multica ...

  4. 以QQ举例 说明计算机网络中的一些概念区别(TCP与UDP,广播与单播)

    QQ 中的 广播与单播 今天简单地学习了一下 广播和多播(组播) 的知识.关于 单播和多播 的概念,可以用 QQ 中的一些例子来解释. 单播,就像 两个人聊QQ 一样,信息的接收和传递只在两个节点之间 ...

  5. UDP:rfc768/广播和多播/IGMP

    封装情况:

  6. netty的Udp单播、组播、广播实例+Java的Udp单播、组播、广播实例

    网络上缺乏netty的udp的单播.组播案例,经过一番学习总结之后终于把这两个案例调通,下面把这两个案例的代码放在这里分享一下. 首先推荐博文: http://colobu.com/2014/10/2 ...

  7. TCP/IP协议原理与应用笔记12:单播、多播和广播地址(目的地址)

    根据数据接收者的接收范围,将目的地址分为单播.多播.广播. 这里目的地址的划分主要针对的是 物理地址 和 IP地址,没有涉及到端口地址,因为主要针对标识通信节点的地址(物理地址 和 IP地址)而言,和 ...

  8. UDP单播和组播使用SO_REUSEADDR 测试结果

    UDP单播通信 一. 预置条件 A.B在同一台机器,网络中存在往A.B所在的机器的8888端口发送单播UDP数据 A:端口复用绑定在端口8888上 B:端口复用绑定在端口8888上操作步骤:(1)先启 ...

  9. iOS 利用Socket UDP协议广播机制的实现

    1.前言 什么是UDP协议广播机制? 举一个例. 比如在一群人群中,一个人要找张三,于是你向人群里大喊一声(广播):"谁是张三" 假设它是张三,它就会回应你.在网络中也是一样的. ...

随机推荐

  1. linux文件系統详解

    什么是文件系统 文件系统是操作系统用于明确磁盘或分区上的文件的方法和数据结构,即在存储设备(磁盘)上组织文件的方法.操作系统中负责管理和存储文件信息的软件结构称为文件管理系统,简称文件系统. 从系统角 ...

  2. Linux实战教学笔记50:Zabbix监控平台3.2.4(二)深入理解zabbix

    https://www.cnblogs.com/chensiqiqi/p/9162986.html 一,Zabbix Web操作深入 1.1 Zabbix Web下的主机和模版以及监控项的添加方式 ( ...

  3. python小白——进阶之路——day2天-———变量的缓存机制+自动类型转换

    # ###同一文件,变量的缓存机制 ''' -->Number 部分 1.对于整型而言,-5~正无穷范围内的相同值 id一致 2.对于浮点数而言,非负数范围内的相同值 id一致 3.布尔值而言, ...

  4. PS制作漂亮紫色霓虹灯光文字

    一.新建画布,大小1500 * 950像素,分辨率为300,置入墙壁图像,大小适合. 二.调整图层的色阶,色相/饱和度. 三.新建文字图层,颜色为#a33e88,大小为103,字体为Beon Medi ...

  5. PS外挂滤镜调出清晰对比照片

    最终效果 一.打开原图. 二.我们使用类似第一部分的相同方法,但设置上略有不同,我们将光线放在不同的地方.复制底层,执行滤镜-LUCIS ART水彩滤镜-LUCISART 选择 雕刻 设置参数为25. ...

  6. ABP中的模块初始化过程(一)

    在总结完整个ABP项目的结构之后,我们就来看一看ABP中这些主要的模块是按照怎样的顺序进行加载的,在加载的过程中我们会一步步分析源代码来进行解释,从而使自己对于整个框架有一个清晰的脉络,在整个Asp. ...

  7. CMS Collector and G1 Collector

    Understanding the CMS Collector CMS has three basic operations: CMS collects the young generation (s ...

  8. python 高阶函数之 map

    以例子来理解 用法1:如函数 f(x) = x * x,用python实现如下 >>> def f(x): ... return x * x >>> r = map ...

  9. 【系统架构】软件核心复杂性应对之道-领域驱动DDD(Domain-Driven Design)

    前言 领域驱动设计是一个开放的设计方法体系,目的是对软件所涉及到的领域进行建模,以应对系统规模过大时引起的软件复杂性的问题,本文将介绍领域驱动的相关概念. 一.软件复杂度的根源 1.业务复杂度(软件的 ...

  10. Access-Control-Allow-Origin跨域请求处理

    今天在看新项目的时候,发现很多的   Controller 中都有一个 response.setHeader("Access-Control-Allow-Origin"," ...