from keras.datasets import reuters
import numpy as np
from keras.utils.np_utils import to_categorical
from keras import layers
from keras import models
import matplotlib.pyplot as plt
def vectorize_sequences(sequences,dimension = 10000):
result = np.zeros((len(sequences),dimension))
for i in range(len(sequences)):
result[i,sequences[i]] = 1
return result
#8982条训练数据,2246条测试数据
(x_train, y_train),(x_test, y_test) = reuters.load_data(num_words=10000)
#训练数据向量化
x_train = vectorize_sequences(x_train)
y_train = to_categorical(y_train) network = models.Sequential()
network.add(layers.Dense(64,activation='relu'))
network.add(layers.Dense(64,activation='relu'))
#softmax返回一个概率值,每个概率是分到该类别的可能性
network.add(layers.Dense(46,activation='softmax')) network.compile(optimizer='rmsprop',loss='categorical_crossentropy',metrics=['accuracy']) history = network.fit(x_train,y_train,batch_size=256,epochs=20,validation_split=0.25) history_dict = history.history
loss = history_dict['loss']
val_loss = history_dict['val_loss']
acc = history_dict['acc']
val_acc = history_dict['val_acc'] epochs = range(1,21)
#loss的图
plt.subplot(121)
plt.plot(epochs,loss,'g',label = 'Training loss')
plt.plot(epochs,val_loss,'b',label = 'Validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
#显示图例
plt.legend() plt.subplot(122)
plt.plot(epochs,acc,'g',label = 'Training accuracy')
plt.plot(epochs,val_acc,'b',label = 'Validation accuracy')
plt.xlabel('Epochs')
plt.ylabel('accuracy')
plt.legend()
plt.show()

在第9轮以后,随之模型的训练,训练集的loss不断减少,但是验证集的loss开始增加,这种情况发生了过拟合,把轮次改成9即可

reuters-多分类问题的更多相关文章

  1. [Deep-Learning-with-Python]基于Kears的Reuters新闻分类

    Reuters数据集下载速度慢,可以在我的repo库中找到下载,下载后放到~/.keras/datasets/目录下,即可正常运行. 构建神经网络将路透社新闻分类,一共有46个类别.因为有多个类别,属 ...

  2. 浅谈NLP 文本分类/情感分析 任务中的文本预处理工作

    目录 浅谈NLP 文本分类/情感分析 任务中的文本预处理工作 前言 NLP相关的文本预处理 浅谈NLP 文本分类/情感分析 任务中的文本预处理工作 前言 之所以心血来潮想写这篇博客,是因为最近在关注N ...

  3. Python深度学习案例2--新闻分类(多分类问题)

    本节构建一个网络,将路透社新闻划分为46个互斥的主题,也就是46分类 案例2:新闻分类(多分类问题) 1. 加载数据集 from keras.datasets import reuters (trai ...

  4. keras框架下的深度学习(二)二分类和多分类问题

    本文第一部分是对数据处理中one-hot编码的讲解,第二部分是对二分类模型的代码讲解,其模型的建立以及训练过程与上篇文章一样:在最后我们将训练好的模型保存下来,再用自己的数据放入保存下来的模型中进行分 ...

  5. 神经网络、logistic回归等分类算法简单实现

    最近在github上看到一个很有趣的项目,通过文本训练可以让计算机写出特定风格的文章,有人就专门写了一个小项目生成汪峰风格的歌词.看完后有一些自己的小想法,也想做一个玩儿一玩儿.用到的原理是深度学习里 ...

  6. 开源 iOS 项目分类索引大全 - 待整理

    开源 iOS 项目分类索引大全 GitHub 上大概600个开源 iOS 项目的分类和介绍,对于你挑选和使用开源项目应该有帮助 系统基础库 Category/Util sstoolkit 一套Cate ...

  7. Atitit 图像处理和计算机视觉的分类 三部分 图像处理 图像分析 计算机视觉

    Atitit 图像处理和计算机视觉的分类 三部分 图像处理 图像分析 计算机视觉 1.1. 按照当前流行的分类方法,可以分为以下三部分:三部分 图像处理 图像分析 计算机视觉1 1.2. 图像处理需要 ...

  8. Atitit 知识管理的重要方法 数据来源,聚合,分类,备份,发布 搜索

    Atitit 知识管理的重要方法 数据来源,聚合,分类,备份,发布 搜索 1.1. Rss 简易信息聚合(也叫聚合内容 Really Simple Syndication1 1.1. Rss 简易信息 ...

  9. 8.SVM用于多分类

    从前面SVM学习中可以看出来,SVM是一种典型的两类分类器.而现实中要解决的问题,往往是多类的问题.如何由两类分类器得到多类分类器,就是一个值得研究的问题. 以文本分类为例,现成的方法有很多,其中一劳 ...

  10. SVM分类与回归

    SVM(支撑向量机模型)是二(多)分类问题中经常使用的方法,思想比较简单,但是具体实现与求解细节对工程人员来说比较复杂,如需了解SVM的入门知识和中级进阶可点此下载.本文从应用的角度出发,使用Libs ...

随机推荐

  1. IP防护等级简介

    IP(INGRESS PROTECTION)防护等级系统是由IEC(INTERNATIONAL ELECTROTECHNICAL COMMISSION)所起草,将电器依其防尘防湿气之特性加以分级 IP ...

  2. [kuangbin带你飞]专题二十二 区间DP-B-LightOJ - 1422

    题意大概是这样,第i天必须穿a[i](某一种类)的衣服,你可以套着穿很多件,对于第i天,你有两种操作,一种是脱掉现在的衣服,一种是穿上新的一件,但是你脱掉的衣服,以后不能再穿.问最少需要多少件衣服? ...

  3. 使用栈实现队列(1)(Java)

    class MyQueue { private Stack s1; private Stack s2; public MyQueue(int size) { this.s1 = new Stack(s ...

  4. MySQL数据库执行计划(简单版)

    +++++++++++++++++++++++++++++++++++++++++++标题:MySQL数据库执行计划简单版时间:2019年2月25日内容:MySQL数据库执行计划简单版重点:MySQL ...

  5. Asp.Net Core Options模式的知识总结

    Options模式是Asp.Net Core中用于配置的一种模式,它利用了系统的依赖注入,并且还可以利用配置系统.它使我们可以采用依赖注入的方法直接使用绑定的一个POCO对象,这个POCO对象就叫做O ...

  6. NIO的初步入门

    NIO java NIO简介 Java NIO 简介 是从java1.4版本开始引入的一个新的IO AP可以替代标准java  IO API NIO与原来的IO有同样的作用和目的,但是使用方式完全不同 ...

  7. java循环1

    public class f_w { public static void main(String []args) { int a=0; System.out.print("_info__w ...

  8. 浅拷贝(Shallow Copy) VS 深拷贝(Deep Copy)

    首先,深拷贝和浅拷贝针对的是对象类型(对象,数组,函数) 浅拷贝指的是只是拷贝了对象的引用地址,彼此之间高耦合,一个改变,另一个可能也随之改变: 深拷贝是指只是完整的将变量的值拷贝过来,是一个新的对象 ...

  9. Python——SQL——将查询的数据列表化

    sql = 'select paihao from yang1.cailiaopai' data = datebase.shujuku.sj_select(sql) #将获得的数据进行列表化 data ...

  10. How To Configure NetScaler AppFlow for SolarWinds

    How To Configure NetScaler AppFlow for SolarWinds 来源  https://support.citrix.com/article/CTX227300 A ...