一,简介

退火算法不言而喻,就是钢铁在淬炼过程中失温而成稳定态时的过程,热力学上温度(内能)越高原子态越不稳定,而温度有一个向低温区辐射降温的物理过程,当物质内能不再降低时候该物质原子态逐渐成为稳定有序态,这对我们从随机复杂问题中找出最优解有一定借鉴意义,将这个过程化为算法,具体参见其他资料。

二,计算方程

我们所要计算的方程是f(x) = (x - 2) * (x + 3) * (x + 8) * (x - 9),是一个一元四次方程,我们称为高次方程,当然这个函数的开口是向上的,那么在一个无限长的区间内我们可能找不出最大值点,因此我们尝试在较短区间内解最小值点,我们成为最优解。

解法1:

毫无疑问,数学方法多次求导基本可以解出,但是这个过程较复杂,还容易算错,我就不赘述了,读者有时间自己可以尝试解一下。

解法二:

这个解法就是暴力解决了,我们这里只求解区间[-10,10]上的最优解,直接随机200个点,再除以10(这样可以得到非整数横坐标),再依此计算其纵坐标f(x),min{f(x)}一下,用list的index方法找出最小值对应位置就行了,然后画出图形大致瞄一瞄。

直接贴代码:

 import random
import matplotlib.pyplot as plt list_x = []
# for i in range(1):
# #print(random.randint(0,100))
# for i in range(0,100):
# print("sss",i)
#
# list_x.append(random.randint(0,100))
for i in range(-100,100):
list_x.append(i/10) print("横坐标为:",list_x)
print(len(list_x)) list_y = []
for x in list_x:
# print(x)
#y = x*x*x - 60*x*x -4*x +6
y = (x - 2) * (x + 3) * (x + 8) * (x - 9)
list_y.append(y)
print("纵坐标为:",list_y) #经验证,这里算出来的结果6.5和最优解1549都是对的
print("最小值为:",min(list_y))
num = min(list_y)
print("最优解:",list_y.index(num)/10)
print("第",list_y.index(num)/10-10,"个位置取得最小值") plt.plot(list_x, list_y, label='NM')
#plt.plot(x2, y2, label='Second Line')
plt.xlabel('X') #横坐标标题
plt.ylabel('Y') #纵坐标标题
#plt.title('Interesting Graph\nCheck it out',loc="right") #图像标题
#plt.title('Interesting Graph\nCheck it out')
plt.legend() #显示Fisrt Line和Second Line(label)的设置
plt.savefig('C:/Users/zhengyong/Desktop/1.png')
plt.show()

得到如下结果:

那么我们得出最优解的坐标是(6.5,-1549.6875),结果先放这里,接下来用退火算法看能不能解出。

解法三:

我们看一张图(解法二中的方法得出的图),然后讲讲退火算法的最核心的思想。

首先,先随机一个[-10.10]之间的随机解,作为初始解空间,比方说随机了一个位于[-2.5.2.5]中最高的那个点就是点1(横坐标为x1),他有对于的纵坐标的值y1,这时候我们把这个点的横坐标随机加或者减去一个值(注意这个值的大小很重要,我们先叫他随机移动值),加或者减后得到新的横坐标的值x2,再算出这个横坐标的对应纵坐标(y2),对比之前的纵坐标的大小,这里设置

delta = y2-y1,发现无论怎样都是小于原先的纵坐标(前提是随机移动值足够小),这时候我们把新得到的x2赋值给x1,这时候现在的x2的值传给x1,x1是原先随机的值,这个过程可以重复iter_num 次,大小就根据自己的区间来。

上述的整个过程是在一个温度下进行的,这个过程结束后我们用温度更新公式再次的更新温度,再去重复上述步骤。

温度更新我是用的常用的公式是T(t)=aT0(t-1),其中0.85≦a≦0.99。也可用相应的热能衰减公式来计算,T(t)=T0/(1+lnt),t=1,2,3,...,这都是简单的状态更新方法。

也就是说,不管你随机的是几我都能朝着优化的方向前进(前提是非最优点)。

其次,点2 是同理的,区别在于他是局部最优解,那么跳出这个局部最优解的机制是什么呢?

若初始点是(x3,y3),然后用上述方法得出(x4,y4),在点二处得到的delta肯定是大于0的,那么怎么办呢?当大于0的时候我们每次都有一定的概率来接受这个看起来不是最优的点,叫Metropolis准则,具体是这样的:

这里的E就是y,T就是当前温度,delta小于0就是百分百接受新值,否者就是按照这个概率接受,当迭代多次的时候,每次向右移动的步长累加到点1 时候他就有可能找到最终的最优解了,步长是累加的但是概率是累成的,意味着这个概率很小,但是一旦迭代次数多久一定会跑出来到最优解处。

最优,点3不解释了哈,和上面一样。

那么我们上代码:

 #自己改写的退火算法计算方程(x - 2) * (x + 3) * (x + 8) * (x - 9)的计算方法
#class没啥用
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import pyplot as plt #设置基本参数
#T初始温度,T_stop,iter_num每个温度的迭代次数,Q温度衰减次数
class Tuihuo_alg():
def __init__(self,T_start,iter_num,T_stop,Q,xx,init_x):
self.T_start = T_start
self.iter =iter_num
self.T_stop = T_stop
self.Q = Q
self.xx = xx
self.init_x = init_x
# def cal_x2y(self):
# return (x - 2) * (x + 3) * (x + 8) * (x - 9) if __name__ == '__main__': def cal_x2y(x):
#print((x - 2) * (x + 3) * (x + 8) * (x - 9))
return (x - 2) * (x + 3) * (x + 8) * (x - 9)
T_start = 1000
iter_num = 1000
T_stop = 1
Q = 0.95
K = 1
l_boundary = -10
r_boundary = 10
#初始值
xx = np.linspace(l_boundary, r_boundary, 300)
yy = cal_x2y(xx)
init_x =10 * ( 2 * np.random.rand() - 1)
print("init_x:",init_x) t = Tuihuo_alg(T_start,iter_num,T_stop,Q,xx,init_x) val_list = [init_x]
while T_start>T_stop:
for i in range(iter_num):
init_y = cal_x2y(init_x)
#这个区间(2 * np.random.rand() - 1)本身是(-1,1),所以加上就是一个随机加或者减过程
new_x = init_x + (2 * np.random.rand() - 1)
if l_boundary <= new_x <= r_boundary:
new_y = cal_x2y(new_x)
#print("new_x:",new_x)
#print('new_y:',new_y)
delta = new_y - init_y #新减旧
if delta < 0:
init_x = new_x
else:
p = np.exp(-delta / (K * T_start))
if np.random.rand() < p:
init_x = new_x
#print("new_x:",new_x)
#print("当前温度:",T_start)
T_start = T_start * Q print("最优解x是:", init_x) #这里最初写的是new_x,所以结果一直不对
print("最优解是:", init_y)
#比如我加上new_x,真假之间的误差实际就是最后一次的赋值“init_x = new_x”
print("假最优解x是:", new_x) #这里最初写的是new_x,所以结果一直不对
print("假最优解是:", new_y) xx = np.linspace(l_boundary,r_boundary,300)
yy = cal_x2y(xx)
plt.plot(xx, yy, label='Tuihuo')
#plt.plot(x2, y2, label='Second Line')
plt.xlabel('X for tuihuo') #横坐标标题
plt.ylabel('Y for tuihuo') #纵坐标标题
#plt.title('Interesting Graph\nCheck it out',loc="right") #图像标题
#plt.title('Interesting Graph\nCheck it out')
plt.legend() #显示Fisrt Line和Second Line(label)的设置
plt.savefig('C:/Users/zhengyong/Desktop/1.png')
plt.show()

这里用了class,发现并不需要,但是不想改了,就这样吧。

最优结果为:

得出的示意图为:

三,总结

退火算法的具体思想我没怎么讲,但是核心的点我都写出来了,经过验证发现退火算法得出了(6.551677228904226,-1548.933671426107)的最优解,看看解法二的(6.5,-1549.6875),我们发现,呵呵,差不多,误差来讲的话,能接受,当然读者也可以多跑几个数据出来验证。

我的实验环境是Python3.6,Numpy1.14.3,matplotlib2.2.2,64位win10,1709教育版,OS内核16299.547,就这样吧,尽量讲详细点。

Python退火算法在高次方程的应用的更多相关文章

  1. 机器学习:Python实现lms中的学习率的退火算法

    ''' 算法:lms学习率的退火算法 解决的问题:学习率不变化,收敛速度较慢的情况 思路:由初始解和控制参数初值开始,对当前解重复进行"产生新解-->计算目标函数差--> 接受或 ...

  2. Python基础算法综合:加减乘除四则运算方法

    #!usr/bin/env python# -*- coding:utf-8 -*-#python的算法加减乘除用符号:+,-,*,/来表示#以下全是python2.x写法,3.x以上请在python ...

  3. xsank的快餐 » Python simhash算法解决字符串相似问题

    xsank的快餐 » Python simhash算法解决字符串相似问题 Python simhash算法解决字符串相似问题

  4. python聚类算法实战详细笔记 (python3.6+(win10、Linux))

    python聚类算法实战详细笔记 (python3.6+(win10.Linux)) 一.基本概念:     1.计算TF-DIF TF-IDF是一种统计方法,用以评估一字词对于一个文件集或一个语料库 ...

  5. python排序算法实现(冒泡、选择、插入)

    python排序算法实现(冒泡.选择.插入) python 从小到大排序 1.冒泡排序: O(n2) s=[3,4,2,5,1,9] #count = 0 for i in range(len(s)) ...

  6. Python C3 算法 手动计算顺序

    Python C3 算法 手动计算顺序   手动计算类继承C3算法原则: 以所求类的直接子类的数目分成相应部分 按照从左往右的顺序依次写出继承关系 继承关系第一个第一位,在所有后面关系都是第一个出现的 ...

  7. python聚类算法解决方案(rest接口/mpp数据库/json数据/下载图片及数据)

    1. 场景描述 一直做java,因项目原因,需要封装一些经典的算法到平台上去,就一边学习python,一边网上寻找经典算法代码,今天介绍下经典的K-means聚类算法,算法原理就不介绍了,只从代码层面 ...

  8. python相关性算法解决方案(rest/数据库/json/下载)

    1. 场景描述 一直做java,因项目原因,需要封装一些经典的算法到平台上去,就一边学习python,一边网上寻找经典算法代码,今天介绍下经典的相关性算法,算法原理就不介绍了,只从代码层面进行介绍,包 ...

  9. 关联规则 -- apriori 和 FPgrowth 的基本概念及基于python的算法实现

    apriori 使用Apriori算法进行关联分析 貌似网上给的代码是这个大牛写的 关联规则挖掘及Apriori实现购物推荐  老师 Apriori 的python算法实现 python实现关联规则  ...

随机推荐

  1. CNN:Channel与Core的高H、宽W的权值理解

    转自: 知乎问题[能否对卷积神经网络工作原理做一个直观的解释?https://www.zhihu.com/question/39022858]中YJango 的回答; 因总是忘记回答地址,方便以后查阅 ...

  2. POJ 1015 Jury Compromise(双塔dp)

    Jury Compromise Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 33737   Accepted: 9109 ...

  3. 转:Mac操作技巧 | "键盘侠"必备快捷键

    看到一篇网友整理的比较好的“Mac操作技巧 | "键盘侠"必备快捷键”,转载过来分享给大家!希望能有帮助. 更多专题,可关注小编[磨人的小妖精],查看我的文章,也可上[风云社区 S ...

  4. ruby 对象转换哈希(Hash)

    通过 ActiveRecord 从数据库的某张数据表(table)中获取的对象如何转换成为 Hash orders_table 是一张订单信息表,对应的 model 为 Orders @order = ...

  5. dubbo本地服务化实现(dubbo三)

    一.dubbo服务化架构包含的内容 对于传统工程而言,分层的依据是按照包来区分.由于在相同的工程中,所以服务的提供和调用可以方便的实现. 但是对于分布式架构而言,服务的提供者负责服务具体的实现和接口规 ...

  6. NOI-OJ 2.2 ID:1696 逆波兰表达式

    思路 很容易看出规律,一个运算符出现,其后就一定需要左值和右值,而左值和右值有可能还是运算符,这就需要继续递归.递归终止的条件就是遇到数字. 逆波兰表达式其实是构造成了一颗二叉树 例程 #includ ...

  7. [数学笔记Mathematical Notes]1-调和级数发散的一个简单证明

    定理. 调和级数 $\dps{\vsm{n}\frac{1}{n}}$ 是发散的. 证明. 设 $$\bex a_n=\sum_{k=1}^n\frac{1}{k}, \eex$$ 则 $a_n$ 递 ...

  8. 通信协议:HTTP、TCP、UDP

    TCP   HTTP   UDP: 都是通信协议,也就是通信时所遵守的规则,只有双方按照这个规则“说话”,对方才能理解或为之服务. TCP   HTTP   UDP三者的关系: TCP/IP是个协议组 ...

  9. day 16 - 2 内置函数(二)练习

    内置函数(二)练习 1.用 map 来处理字符串列表,把列表中所有人都变成 sb,比方 alex_sbname=['alex','wupeiqi','yuanhao','nezha'] name=[' ...

  10. Ansible------角色

    什么是角色 角色是一种解决问题的思想,也是一种规范. 目录 角色的目录结构如下: files: 存放由copy或script模块等调用的文件. templates: template模块查找所需要模板 ...