P5239 回忆京都(洛谷3月月赛T2)
题目描述
射命丸文在取材中发现了一个好玩的东西,叫做组合数。
组合数的定义如下:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合。所有组合的数量,就是组合数。
$\sum_{i=1}^n \sum_{j=1}^m C^i_j$,其中当i>j的时候,钦定$C^i_j$为0
她也很快就算出来了,不过对自己的答案不是很充满信心,因此你决定帮助她。然而没事找事的她一下子算了q次对于不同的n,m的结果,因此这只能劳烦你了。由于你不打算真正地帮助她,你无需把答案对998244353取模,也无需对64123取模,只要告诉她对取模之后的答案即可。
输入输出格式
输入格式:
第一行输入一个q,表示有q次询问。
第二行开始,一共q行,每行两个数字n,m,意思如题所示。
输出格式:
一共q行,对于每一个询问,都输出一个答案。
数据范围:n,m<=1000
solution
容易想到预处理出杨辉三角, c[i][j]表示$c^j_i$ %mod,递推公式是c[i][j]=c[i-1][j]+c[i-1][j-1],注意处理c[i][0]=1;
这样每次询问是O(nm),总的时间复杂度是O(qnm),TLE3个点,需要优化
通过模拟发现,题目中要求的数的和实际上在杨辉三角中是一个矩形的区域,也就是右下角下标为c[m][n]
例如,当m=4,n=3时,就是矩形区域的和,所以只需要维护一个二维前缀和就行了
一个大坑:当预处理二维前缀和时因为经过了取模,所以容易出现新的前缀和为负数的情况,而我们希望得到的一定是个正数,所以每一项s[i][j]=(s[i][j]+mod)%mod;
因为这个坑WA了三个
code
#include<cstdio>
#include<iostream>
#include<cstring>
#define mod 19260817//咳咳
#define maxn 1020
using namespace std;
long long s[maxn][maxn],ts[maxn][maxn];
int n,m,t,x,ans,tmp;
void init(int n)
{
for(int i=;i<=n;++i)
{
s[i][]=;
}
for(int i=;i<=n;++i)
{
for(int j=;j<=n;++j)
{
if(j<=i) s[i][j]=(s[i-][j]+s[i-][j-])%mod;//杨辉三角 ts[i][j]=(ts[i-][j]+ts[i][j-]-ts[i-][j-]+s[i][j]+mod/*关键*/)%mod;//二维前缀和
} } }
int main()
{
scanf("%d",&t);
init();//预处理杨辉三角与前缀和
for(int k=;k<=t;++k)
{
scanf("%d%d",&n,&m);
printf("%lld\n",ts[m][n]);
}
return ;
}
P5239 回忆京都(洛谷3月月赛T2)的更多相关文章
- 「P4994」「洛谷11月月赛」 终于结束的起点(枚举
题目背景 终于结束的起点终于写下句点终于我们告别终于我们又回到原点…… 一个个 OIer 的竞赛生涯总是从一场 NOIp 开始,大多也在一场 NOIp 中结束,好似一次次轮回在不断上演.如果这次 NO ...
- 洛谷4月月赛R2
洛谷4月月赛R2 打酱油... A.koishi的数学题 线性筛约数和就可以\(O(N)\)了... #include <iostream> #include <cstdio> ...
- 洛谷3月月赛 R1 Step! ZERO to ONE
洛谷3月月赛 R1 Step! ZERO to ONE 普及组难度 290.25/310滚粗 t1 10分的日语翻译题....太难了不会... t2 真·普及组.略 注意长为1的情况 #include ...
- 【洛谷5月月赛】玩游戏(NTT,生成函数)
[洛谷5月月赛]玩游戏(NTT,生成函数) 题面 Luogu 题解 看一下要求的是什么东西 \((a_x+b_y)^i\)的期望.期望显然是所有答案和的平均数. 所以求出所有的答案就在乘一个逆元就好了 ...
- 【LGR-054】洛谷10月月赛II
[LGR-054]洛谷10月月赛II luogu 成功咕掉Codeforces Round #517的后果就是,我\(\mbox{T4}\)依旧没有写出来.\(\mbox{GG}\) . 浏览器 \( ...
- 【LGR-051】洛谷9月月赛
[LGR-051]洛谷9月月赛 luogu 签到题 description 给出\(K\)和质数\(m\),求最小的\(N\)使得\(111....1\)(\(N\)个\(1\))\(\equiv k ...
- 「LGR-049」洛谷7月月赛 D.Beautiful Pair
「LGR-049」洛谷7月月赛 D.Beautiful Pair 题目大意 : 给出长度为 \(n\) 的序列,求满足 \(i \leq j\) 且 $a_i \times a_j \leq \max ...
- 洛谷9月月赛round2
洛谷9月月赛2 t1 题意:懒得说了 分析:模拟 代码: program flag; var a:..,..]of char; n,i,m,j,x,y,ans,k:longint; begin ass ...
- 「P4996」「洛谷11月月赛」 咕咕咕(数论
题目描述 小 F 是一个能鸽善鹉的同学,他经常把事情拖到最后一天才去做,导致他的某些日子总是非常匆忙. 比如,时间回溯到了 2018 年 11 月 3 日.小 F 望着自己的任务清单: 看 iG 夺冠 ...
随机推荐
- JVM(五)垃圾回收器的前世今生
全文共 2195 个字,读完大约需要 8 分钟. 如果垃圾回收的算法属于内存回收的方法论的话,那本文讨论的垃圾回收器就属于内存回收的具体实现. 因为不同的厂商(IBM.Oracle),实现的垃圾回收器 ...
- 关于跨DB增量(增、改)同步两张表的数据小技巧
有些场景下,需要隔离不同的DB,彼此DB之间不能互相访问,但实际的业务场景又需要从A DB访问B DB的情形,这时怎么办?我认为有如下常规的三种方案: 1.双方提供RESET API,需要访问不同DB ...
- [Vue] vue跳转外部链接
问题 vue 跳转外部链接问题,当跳转的时候会添加在当前地址后面 var url = 'www.baidu.com' //跳转1 window.localtion.href = url //跳转2 w ...
- .Net语言 APP开发平台——Smobiler学习日志:在手机应用开发中如何快速调用电话拨打功能
样式一 一.目标样式 我们要实现上图中的效果,需要如下的操作: 1.从工具栏上的”Smobiler Components”拖动一个PhoneButton控件到窗体界面上 2.修改PhoneButton ...
- 第3章 支持和规范 - Identity Server 4 中文文档(v1.0.0)
IdentityServer实现以下规范: 3.1 OpenID Connect OpenID Connect Core 1.0 (规范) OpenID Connect Discovery 1.0 ( ...
- Servlet版本冲突引起的Error
本地打包部署应用都可以正常启动和响应请求,但是通过CI打包部署到服务器有请求进来时就会报错: java.lang.NoSuchMethodError: javax.servlet.http.HttpS ...
- js之制作网页计时器
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- 华为防火墙USG6000V使用总结
问题1.ge 1/0/0 的ip地址 20.0.0.2 ,从直连的对端20.0.0.1 无法ping. 但是从防火墙ping对端却是可以ping通? 原因: 华为新一代的防火墙,默认情况下,只有0口是 ...
- MongoDB:配置与安装
一.配置环境 1.1进行安装下载msi文件 需要注意的一点是,在安装过程中的图示界面不要勾选左下角“安装MongoDB可视化工具”.这是一个客户端管理工具,在后面会具体描述其功能.由于安装时间非常长, ...
- 基于raspberry搭建个人web server
树莓派系统介绍 安装操作系统及网络\远程控制配置 安装常用软件 构建web服务器(nginx + php + sqlite) 构建web服务器(appach+mysql+php) 构建NAS服务器 其 ...