[十二省联考2019]D1T1异或粽子
嘟嘟嘟
做这题之前,强烈推荐先把这道题切了P1631序列合并。
这两道题思路基本一模一样。
首先把异或处理成前缀异或,然后维护一个大根堆,每一次取出堆顶加到答案里面,然后把堆顶所在元素的次大的异或值放进堆里。这样循环\(k\)次,就是答案。
关键在于对于数\(sum[i]\),怎么找异或第几大。众人皆知是建01trie,然后在trie上像平衡树找第\(k\)大一样二分就可以了。因为对于每一个\(i\),查找的范围是\(0\) ~ \(i - 1\),建\(n\)棵trie树当然不行,所以我们要建一棵可持久化trie树就好啦。
但是有更好的方法。我们之所以要建可持久化trie树,就是因为每一个点的查找范围不同,否则建一棵就够了。那范围为什么不同呢?就是为了怕找重。但重了就是每一个答案算了两遍,所以我们直接建一棵trie树,然后循环\(2k\)次,然后最后的答案除以2不就是真正的答案了吗。
#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define In inline
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxn = 5e5 + 5;
const int maxt = 1e7 + 5;
const int N = 31;
inline ll read()
{
ll ans = 0;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) last = ch, ch = getchar();
while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < 0) x = -x, putchar('-');
if(x >= 10) write(x / 10);
putchar(x % 10 + '0');
}
In void MYFILE()
{
#ifndef mrclr
freopen("xor.in", "r", stdin);
freopen("xor.out", "w", stdout);
#endif
}
int n, K;
ll a[maxn], sum[maxn];
ll b[maxn], cnt = 0;
In void work0()
{
for(int i = 1; i <= n; ++i)
{
ll sum = 0;
for(int j = i; j <= n; ++j)
sum ^= a[j], b[++cnt] = sum;
}
sort(b + 1, b + cnt + 1);
ll ans = 0;
for(int i = cnt; i >= cnt - K + 1; --i) ans += b[i];
write(ans), enter;
}
struct Node
{
ll val, num; int rk;
In bool operator < (const Node& oth)const
{
return val < oth.val;
}
};
priority_queue<Node> q;
struct Tree
{
int ch[2], siz;
}t[maxt];
int root, tcnt = 0;
In void insert(int& now, ll x, int d)
{
if(!now) now = ++tcnt;
if(d == -1) {++t[now].siz; return;}
insert(t[now].ch[(x >> d) & 1], x, d - 1);
t[now].siz = t[t[now].ch[0]].siz + t[t[now].ch[1]].siz;
}
In ll query(ll x, int k)
{
ll ret = 0; int now = root;
for(int i = N; i >= 0; --i)
{
int p = (x >> i) & 1;
if(t[t[now].ch[p ^ 1]].siz >= k) now = t[now].ch[p ^ 1], ret |= ((1LL * 1) << i);
else k -= t[t[now].ch[p ^ 1]].siz, now = t[now].ch[p];
}
return ret;
}
int main()
{
//MYFILE();
n = read(), K = read();
for(int i = 1; i <= n; ++i) a[i] = read();
if(n <= 5000) {work0(); return 0;}
for(int i = 1; i <= n; ++i) sum[i] = sum[i - 1] ^ a[i];
for(int i = 0; i <= n; ++i) insert(root, sum[i], N);
for(int i = 0; i <= n; ++i)
q.push((Node){query(sum[i], 1), sum[i], 1});
ll ans = 0;
for(int i = 1; i <= (K << 1); ++i)
{
Node tp = q.top(); q.pop();
ans += tp.val;
if(tp.rk <= n) q.push((Node){query(tp.num, tp.rk + 1), tp.num, tp.rk + 1});
}
write(ans >> 1), enter;
return 0;
}
[十二省联考2019]D1T1异或粽子的更多相关文章
- LOJ3048 「十二省联考 2019」异或粽子
题意 题目描述 小粽是一个喜欢吃粽子的好孩子.今天她在家里自己做起了粽子. 小粽面前有 $n$ 种互不相同的粽子馅儿,小粽将它们摆放为了一排,并从左至右编号为 $1$ 到 $n$.第 $i$ 种馅儿具 ...
- 「洛谷5283」「LOJ3048」「十二省联考2019」异或粽子【可持久化01trie+优先队列】
题目链接 [洛谷传送门] [LOJ传送门] 题目大意 让你求区间异或和前\(k\)大的异或和的和. 正解 这道题目是Blue sky大佬教我做的(祝贺bluesky大佬进HA省A队) 我们做过某一些题 ...
- LOJ#3048. 「十二省联考 2019」异或粽子(trie树+堆)
题面 传送门 题解 我们先把它给前缀异或和一下,然后就是要求前\(k\)大的\(a_i\oplus a_j\).把\(k\)乘上个\(2\),变成前\(2k\)大的\(a_i\oplus a_j\), ...
- 「十二省联考 2019」异或粽子——tire树+堆
题目 [题目描述] 小粽是一个喜欢吃粽子的好孩子.今天她在家里自己做起了粽子. 小粽面前有 $n$ 种互不相同的粽子馅儿,小粽将它们摆放为了一排,并从左至右编号为 $1$ 到 $n$.第 $i$ 种馅 ...
- LOJ#3048. 「十二省联考 2019」异或粽子 Trie
原文链接www.cnblogs.com/zhouzhendong/p/LOJ3048.html 题解 $O(n\log^2 {a_i})$ 的做法比较简单: 1. 求出第 k 大的是什么: 二分答案, ...
- 「ZJOI2019」&「十二省联考 2019」题解索引
「ZJOI2019」&「十二省联考 2019」题解索引 「ZJOI2019」 「ZJOI2019」线段树 「ZJOI2019」Minimax 搜索 「十二省联考 2019」 「十二省联考 20 ...
- [十二省联考2019]异或粽子——可持久化trie树+堆
题目链接: [十二省联考2019]异或粽子 求前$k$大异或区间,可以发现$k$比较小,我们考虑找出每个区间. 为了快速得到一个区间的异或和,将原序列做前缀异或和. 对于每个点作为右端点时,我们维护出 ...
- 【BZOJ5495】[十二省联考2019]异或粽子(主席树,贪心)
[BZOJ5495][十二省联考2019]异或粽子(主席树,贪心) 题面 BZOJ 洛谷 题解 这不是送分题吗... 转异或前缀和,构建可持久化\(Trie\). 然后拿一个堆维护每次的最大值,每次如 ...
- [十二省联考2019]异或粽子 01trie
[十二省联考2019]异或粽子 01trie 链接 luogu 思路 首先求前k大的(xo[i]^xo[j])(i<j). 考场上只想到01trie,不怎么会写可持久,就写了n个01trie,和 ...
随机推荐
- SQLServer之修改用户自定义数据库用户
修改用户自定义数据库用户注意事项 默认架构将是服务器为此数据库用户解析对象名时将搜索的第一个架构. 除非另外指定,否则默认架构将是此数据库用户创建的对象所属的架构. 如果用户具有默认架构,则将使用默认 ...
- 【重磅】微软开源自动机器学习工具 - NNI
[重磅]微软开源自动机器学习工具 - NNI 在机器学习建模时,除了准备数据,最耗时耗力的就是尝试各种超参组合,找到模型最佳效果的过程了.即使是对于有经验的算法工程师和数据科学家,有时候也很难把握其中 ...
- .Net Core 爬坑日记
安装[DotNetCore.1.0.1-VS2015Tools.Preview2.0.3.exe]失败 查看log发现,发现猫腻,然后copy下链接,用迅雷手动下载[AspNetCoreLocalFe ...
- Ocelot 资源汇总
前言 最近一两年.NET Core的关注度持续上升, 微服务及云原生应用开发上采用.NET Core也越来越多,Ocelot 作为.NET Core平台下一款开源的API 网关开发库越来越得到社区的认 ...
- 从壹开始前后端分离 [ vue + .netcore 补充教程 ] 三十║ Nuxt实战:动态路由+同构
上期回顾 说接上文<二九║ Nuxt实战:异步实现数据双端渲染>,昨天咱们通过项目二的首页数据处理,简单了解到了 nuxt 异步数据获取的作用,以及亲身体验了几个重要文件夹的意义,整篇文章 ...
- 距离度量以及python实现(一)
1. 欧氏距离(Euclidean Distance) 欧氏距离是最易于理解的一种距离计算方法,源自欧氏空间中两点间的距离公式. (1)二维平面上两点a(x1,y1)与b(x2,y2)间 ...
- mysql的学习笔记(一)
前言 开发中经常用mysql和SQL server交替使用,自己都产生知识的混乱.在这里重新整理下mysql的知识,也是梳理自己知识点,因为是学习笔记,所以并不会使用到图形化管理工具.mysql的安装 ...
- springboot~Integer和int如何选择,Integer的意义何在
今天说一下自己在项目中遇到的问题,然后总结一下Integer引用类型和int值类型 关于默认值 Integer默认为null int默认为0 为什么把数据实体设计成Integer或者不是int 大叔认 ...
- Java中实现多线程的四种方式
Java多线程实现方式主要有四种:继承Thread类.实现Runnable接口.实现Callable接口通过FutureTask包装器来创建Thread线程.使用ExecutorService.Cal ...
- Linux环境变量配置全攻略
Linux环境变量配置 在自定义安装软件的时候,经常需要配置环境变量,下面列举出各种对环境变量的配置方法. 下面所有例子的环境说明如下: 系统:Ubuntu 14.0 用户名:uusama 需要配置M ...