文章发布于公号【数智物语】 (ID:decision_engine),关注公号不错过每一篇干货。

转自 | AI研习社

作者|Zonghan Wu

这是一个与图神经网络相关的资源集合。相关资源浏览下方Github项目地址,再点击对应链接跳转下载。

01Github项目地址:

https://github.com/nnzhan/Awesome-Graph-Neural-Networks

02调查报告

  • A Comprehensive Survey on Graph Neural Networks. Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, Philip S. Yu. 2019

    https://arxiv.org/pdf/1901.00596.pdf

  • Geometric deep learning: going beyond euclidean data. Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, Pierre Vandergheynst. 2016.

    https://arxiv.org/pdf/1611.08097.pdf

  • Relational inductive biases, deep learning, and graph networks. Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, Caglar Gulcehre, Francis Song, Andrew Ballard, Justin Gilmer, George Dahl, Ashish Vaswani, Kelsey Allen, Charles Nash, Victoria Langston, Chris Dyer, Nicolas Heess, Daan Wierstra, Pushmeet Kohli, Matt Botvinick, Oriol Vinyals, Yujia Li, Razvan Pascanu. 2018.

    https://arxiv.org/pdf/1806.01261.pdf

  • Attention models in graphs. John Boaz Lee, Ryan A. Rossi, Sungchul Kim, Nesreen K. Ahmed, Eunyee Koh. 2018.

    https://arxiv.org/pdf/1807.07984.pdf

  • Deep learning on graphs: A survey. Ziwei Zhang, Peng Cui and Wenwu Zhu. 2018.

    https://arxiv.org/pdf/1812.04202.pdf

  • Graph Neural Networks: A Review of Methods and Applications Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Maosong Sun. 2018

    https://arxiv.org/pdf/1812.08434.pdf

03论文

01图卷积网络

  • A new model for learning in graph domains. Marco Gori, Gabriele Monfardini, Franco Scarselli. IJCNN 2005.

    https://ieeexplore.ieee.org/abstract/document/1555942

  • The graph neural network model. Franco Scarselli,Marco Gori,Ah Chung Tsoi,Markus Hagenbuchner, Gabriele Monfardini.2009.

    http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1015.7227&rep=rep1&type=pdf

  • Spectral networks and locally connected networks on graphs. Joan Bruna, Wojciech Zaremba, Arthur Szlam, Yann LeCun. ICLR 2014.

    https://arxiv.org/pdf/1312.6203.pdf

  • Convolutional networks on graphs for learning molecular fingerprints. David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre Rafael Go ́mez-Bombarelli, Timothy Hirzel, Ala ́n Aspuru-Guzik, Ryan P. Adams., NIPS 2015.

    http://papers.nips.cc/paper/5954-convolutional-networks-on-graphs-for-learning-molecular-fingerprints.pdf

  • Gated graph sequence neural networks. Yujia Li, Richard Zemel, Marc Brockschmidt, Daniel Tarlow. ICLR 2015.

    https://arxiv.org/pdf/1511.05493.pdf

  • Accelerated filtering on graphs using lanczos method. Ana Susnjara, Nathanael Perraudin, Daniel Kressner, Pierre Vandergheynst. 2015.

    https://arxiv.org/pdf/1509.04537.pdf

  • Deep convolutional networks on graph-structured data. Mikael Henaff, Joan Bruna, Yann LeCun. 2015.

    https://arxiv.org/abs/1506.05163

  • Convolutional neural networks on graphs with fast localized spectral filtering. Michaël Defferrard, Xavier Bresson, Pierre Vandergheynst. NIPS 2016.

    https://arxiv.org/pdf/1606.09375.pdf

  • Diffusion-convolutional neural networks James Atwood, Don Towsley. NIPS 2016.

    https://arxiv.org/pdf/1511.02136.pdf

  • Learning convolutional neural networks for graphs. Mathias Niepert, Mohamed Ahmed, Konstantin Kutzkov. ICML 2016.

    https://arxiv.org/pdf/1605.05273.pdf

  • Molecular graph convolutions: moving beyond fingerprints. Steven Kearnes, Kevin McCloskey, Marc Berndl, Vijay Pande, Patrick Riley 2016.

    https://arxiv.org/pdf/1603.00856.pdf

  • Inductive representation learning on large graphs. William L. Hamilton, Rex Ying, Jure Leskovec. NIPS 2017.

    http://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphs.pdf

  • Neural message passing for quantum chemistry. Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, George E. Dahl. ICML 2017.

    https://arxiv.org/pdf/1704.01212.pdf

  • Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on Graphs Martin Simonovsky, Nikos KomodakisCVPR 2017.

    https://arxiv.org/pdf/1704.02901.pdf

  • Geometric deep learning on graphs and manifolds using mixture model cnns. Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodolà, Jan Svoboda, Michael M. Bronstein. CVPR 2017.

    https://arxiv.org/pdf/1611.08402.pdf

  • Semi-supervised classification with graph convolutional networks. Thomas N. Kipf, Max Welling. ICLR 2017.

    https://arxiv.org/pdf/1609.02907.pdf

  • Robust spatial filtering with graph convolutional neural networks. 2017. Felipe Petroski Such, Shagan Sah, Miguel Dominguez, Suhas Pillai, Chao Zhang, Andrew Michael, Nathan Cahill, Raymond Ptucha.

    https://arxiv.org/abs/1703.00792

  • Cayleynets: graph convolutional neural networks with complex rational spectral filters. Ron Levie, Federico Monti, Xavier Bresson, Michael M. Bronstein. 2017.

    https://arxiv.org/pdf/1705.07664.pdf

  • Hierarchical graph representation learning with differentiable pooling. Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamilton, Jure Leskovec. NeurIPS 2018.

    https://arxiv.org/pdf/1806.08804.pdf

  • Structure-Aware Convolutional Neural Networks. Jianlong Chang, Jie Gu, Lingfeng Wang, Gaofeng Meng, Shiming Xiang, Chunhong Pan. NeurIPS 2018.

    http://papers.nips.cc/paper/7287-structure-aware-convolutional-neural-networks.pdf

  • Adaptive graph convolutional neural networks. Ruoyu Li, Sheng Wang, Feiyun Zhu, Junzhou Huang. AAAI 2018.

    https://arxiv.org/pdf/1801.03226.pdf

  • Deeper insights into graph convolutional networks for semi-supervised learning. Qimai Li, Zhichao Han, Xiao-Ming Wu. AAAI 2018.

    https://arxiv.org/pdf/1801.07606.pdf

  • Large-Scale Learnable Graph Convolutional Networks. Hongyang Gao, Zhengyang Wang, Shuiwang Ji. KDD 2018.

    https://arxiv.org/pdf/1808.03965.pdf

  • FastGCN: Fast Learning with Graph Convolutional Networks via Importance Sampling. Jie Chen, Tengfei Ma, Cao Xiao.ICLR 2018.

    https://arxiv.org/pdf/1801.10247.pdf

  • Learning steady-states of iterative algorithms over graphs. Hanjun Dai, Zornitsa Kozareva, Bo Dai, Alexander J. Smola, Le Song ICML 2018.

    http://proceedings.mlr.press/v80/dai18a/dai18a.pdf

  • Representation learning on graphs with jumping knowledge networks. Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, Stefanie Jegelka. ICML 2018.

    https://arxiv.org/pdf/1806.03536.pdf

  • Stochastic Training of Graph Convolutional Networks with Variance Reduction. Jianfei Chen, Jun Zhu, Le Song. ICML 2018.

    https://arxiv.org/pdf/1710.10568.pdf

  • Dual graph convolutional networks for graph-based semi-supervised classification Chenyi Zhuang, Qiang Ma. WWW 2018.

    http://delivery.acm.org/10.1145/3190000/3186116/p499-zhuang.pdf?ip=1.129.110.137&id=3186116&acc=OPEN&key=4D4702B0C3E38B35%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35%2E6D218144511F3437&__acm__=1546208231_ba22bb40f3bc41441d1fea0606eb8adb

  • Graph capsule convolutional neural networks Saurabh Verma, Zhi-Li Zhang. 2018.

    https://arxiv.org/abs/1805.08090

  • How powerful are graph neural networks? Keyulu Xu, Weihua Hu, Jure Leskovec, Stefanie Jegelka. 2018.

    https://arxiv.org/pdf/1810.00826.pdf

  • Modeling relational data with graph convolutional networks Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, Max Welling. ESW 2018.

    https://arxiv.org/pdf/1703.06103.pdf

  • Multidimensional graph convolutional networks Yao Ma, Suhang Wang, Charu C. Aggarwal, Dawei Yin, Jiliang Tang.2018.

    https://arxiv.org/pdf/1808.06099.pdf

  • Signed graph convolutional network. Tyler Derr, Yao Ma, Jiliang Tang. 2018.

    https://arxiv.org/pdf/1808.06354.pdf

  • Capsule Graph Neural Network Zhang Xinyi, Lihui Chen. ICLR 2019.

    https://openreview.net/pdf?id=Byl8BnRcYm

  • Combining Neural Networks with Personalized PageRank for Classification on Graphs Johannes Klicpera, Aleksandar Bojchevski, Stephan Günnemann. ICLR 2019.

    https://openreview.net/pdf?id=H1gL-2A9Ym

  • DIFFUSION SCATTERING TRANSFORMS ON GRAPHS. Fernando Gama, Alejandro Ribeiro, Joan Bruna. ICLR 2019.

    https://arxiv.org/pdf/1806.08829.pdf

  • Graph Wavelet Neural Network. Bingbing Xu, Huawei Shen, Qi Cao, Yunqi Qiu, Xueqi Cheng. ICLR 2019.

    https://openreview.net/pdf?id=H1ewdiR5tQ

  • LanczosNet: Multi-Scale Deep Graph Convolutional Networks Renjie Liao, Zhizhen Zhao, Raquel Urtasun, Richard Zemel. ICLR 2019.

    https://openreview.net/pdf?id=BkedznAqKQ

  • Bayesian Graph Convolutional Neural Networks for Semi-supervised Classification Yingxue Zhang, Soumyasundar Pal, Mark Coates, Deniz Üstebay. AAAI 2019.

    https://arxiv.org/pdf/1811.11103.pdf

  • Geniepath: Graph neural networks with adaptive receptive paths. Ziqi Liu, Chaochao Chen, Longfei Li, Jun Zhou, Xiaolong Li, Le Song, Yuan Qi. AAAI 2019.

    https://arxiv.org/pdf/1802.00910.pdf

  • Hypergraph Neural Networks. Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, Yue Gao AAAI 2019.

    https://arxiv.org/pdf/1809.09401.pdf

  • Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks. Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav Rattan, Martin Grohe AAAI 2019.

    https://arxiv.org/pdf/1810.02244.pdf

  • Can GCNs Go as Deep as CNNs?. Guohao Li, Matthias Müller, Ali Thabet, Bernard Ghanem. 2019.

    https://arxiv.org/abs/1904.03751

02图的注意力模型

  • Graph Attention Networks. Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, Yoshua Bengio. ICLR 2018.

    https://arxiv.org/pdf/1710.10903.pdf

  • Gaan: Gated attention networks for learning on large and spatiotemporal graphs. Jiani Zhang, Xingjian Shi, Junyuan Xie, Hao Ma, Irwin King, Dit-Yan Yeung. 2018.

    https://arxiv.org/pdf/1803.07294.pdf

  • Watch your step: Learning node embeddings via graph attention. Sami Abu-El-Haija, Bryan Perozzi, Rami Al-Rfou, Alex Alemi. NeurIPS 2018.

    https://arxiv.org/pdf/1710.09599.pdf

  • Graph classification using structural attention. John Boaz Lee, Ryan Rossi, Xiangnan Kong KDD 2018.

    https://dl.acm.org/citation.cfm?id=3219980

03图的自动编码器

  • Structural deep network embedding Daixin Wang, Peng Cui, Wenwu Zhu.

    https://www.kdd.org/kdd2016/papers/files/rfp0191-wangAemb.pdf

  • Deep neural networks for learning graph representations. Shaosheng Cao, Wei Lu, Qiongkai Xu. AAAI 2016.

    https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12423/11715

  • Variational graph auto-encoders. Thomas N. Kipf, Max Welling. 2016.

    https://arxiv.org/pdf/1611.07308.pdf

  • Mgae: Marginalized graph autoencoder for graph clustering Chun Wang, Shirui Pan, Guodong Long, Xingquan Zhu, Jing Jiang. CIKM 2017.

    https://shiruipan.github.io/pdf/CIKM-17-Wang.pdf

  • Link Prediction Based on Graph Neural Networks. Muhan Zhang, Yixin Chen. NeurIPS 2018.

    https://arxiv.org/pdf/1802.09691.pdf

  • SpectralNet: Spectral Clustering using Deep Neural Networks Uri Shaham, Kelly Stanton, Henry Li, Boaz Nadler, Ronen Basri, Yuval Kluger. ICLR 2018.

    https://arxiv.org/pdf/1801.01587.pdf

  • Deep Recursive Network Embedding with Regular Equivalence. Ke Tu, Peng Cui, Xiao Wang, Philip S. Yu, Wenwu Zhu.KDD 2018.

    http://cuip.thumedialab.com/papers/NE-RegularEquivalence.pdf

  • Learning Deep Network Representations with Adversarially Regularized Autoencoders. Wenchao Yu, Cheng Zheng, Wei Cheng, Charu Aggarwal, Dongjin Song, Bo Zong, Haifeng Chen, Wei Wang. KDD 2018.

    http://www.cs.ucsb.edu/~bzong/doc/kdd-18.pdf

  • Adversarially Regularized Graph Autoencoder for Graph Embedding. Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Lina Yao, Chengqi Zhang. IJCAI 2018.

    https://www.ijcai.org/proceedings/2018/0362.pdf

  • Deep graph infomax. Petar Veličković, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, R Devon Hjelm.ICLR 2019.

    https://arxiv.org/abs/1809.10341

04图生成网络

  • Learning graphical state transitions. Daniel D. Johnson. ICLR 2016.

    https://openreview.net/pdf?id=HJ0NvFzxl

  • MolGAN: An implicit generative model for small molecular graphs. Nicola De Cao, Thomas Kipf. 2018.

    https://arxiv.org/pdf/1805.11973.pdf

  • Learning deep generative models of graphs. Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, Peter Battaglia. ICML 2018.

    https://arxiv.org/abs/1803.03324

  • Netgan: Generating graphs via random walks. Aleksandar Bojchevski, Oleksandr Shchur, Daniel Zügner, Stephan Günnemann. ICML 2018.

    https://arxiv.org/pdf/1803.00816.pdf

  • Graphrnn: A deep generative model for graphs. Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamilton, Jure Leskovec.ICML 2018.

    https://arxiv.org/pdf/1802.08773.pdf

  • Constrained Generation of Semantically Valid Graphs via Regularizing Variational Autoencoders. Tengfei Ma, Jie Chen, Cao Xiao. NeurIPS 2018.

    https://papers.nips.cc/paper/7942-constrained-generation-of-semantically-valid-graphs-via-regularizing-variational-autoencoders.pdf

  • Graph convolutional policy network for goal-directed molecular graph generation. Jiaxuan You, Bowen Liu, Rex Ying, Vijay Pande, Jure Leskovec. NeurIPS 2018.

    https://arxiv.org/abs/1806.02473

05图时空网络

  • Structured sequence modeling with graph convolutional recurrent networks. Youngjoo Seo, Michaël Defferrard, Pierre Vandergheynst, Xavier Bresson. 2016.

    https://arxiv.org/pdf/1612.07659.pdf

  • Structural-rnn: Deep learning on spatio-temporal graphs. Ashesh Jain, Amir R. Zamir, Silvio Savarese, Ashutosh Saxena.CVPR 2016.

    https://arxiv.org/abs/1511.05298

  • Deep multi-view spatial-temporal network for taxi. Huaxiu Yao, Fei Wu, Jintao Ke, Xianfeng Tang, Yitian Jia, Siyu Lu, Pinghua Gong, Jieping Ye, Zhenhui Li. AAAI 2018.

    https://arxiv.org/abs/1802.08714

  • Spatial temporal graph convolutional networks for skeleton-based action recognition. Sijie Yan, Yuanjun Xiong, Dahua Lin. AAAI 2018.

    https://arxiv.org/abs/1801.07455

  • Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. Yaguang Li, Rose Yu, Cyrus Shahabi, Yan Liu. ICLR 2018.

    https://arxiv.org/pdf/1707.01926.pdf

  • Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. Bing Yu, Haoteng Yin, Zhanxing Zhu. IJCAI 2018.

    https://arxiv.org/pdf/1709.04875.pdf

  • Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting. Shengnan Guo, Youfang Lin, Ning Feng, Chao Song, HuaiyuWan AAAI 2019.

    https://github.com/Davidham3/ASTGCN/blob/master/2019%20AAAI_Attention%20Based%20Spatial-Temporal%20Graph%20Convolutional%20Networks%20for%20Traffic%20Flow%20Forecasting.pdf

  • Spatiotemporal Multi-Graph Convolution Network for Ride-hailing Demand Forecasting. Xu Geng, Yaguang Li, Leye Wang, Lingyu Zhang, Qiang Yang, Jieping Ye, Yan Liu. AAAI 2019.

    http://www-scf.usc.edu/~yaguang/papers/aaai19_multi_graph_convolution.pdf

  • Spatio-Temporal Graph Routing for Skeleton-based Action Recognition. Bin Li, Xi Li, Zhongfei Zhang, Fei Wu. AAAI 2019.

    https://www.aaai.org/Papers/AAAI/2019/AAAI-LiBin.6992.pdf

04各领域的应用

01计算机视觉(CV)

  • 3d graph neural networks for rgbd semantic segmentation. Xiaojuan Qi, Renjie Liao, Jiaya Jia†, Sanja Fidler, Raquel Urtasun. CVPR 2017.

    http://openaccess.thecvf.com/content_ICCV_2017/papers/Qi_3D_Graph_Neural_ICCV_2017_paper.pdf

  • Syncspeccnn: Synchronized spectral cnn for 3d shape segmentation. Li Yi, Hao Su, Xingwen Guo, Leonidas Guibas.CVPR 2017.

    https://arxiv.org/pdf/1612.00606.pdf

  • A simple neural network module for relational reasoning. Adam Santoro, David Raposo, David G.T. Barrett, Mateusz Malinowski, Razvan Pascanu, Peter Battaglia, Timothy Lillicrap. NIPS 2017

    https://arxiv.org/pdf/1706.01427.pdf

  • Situation Recognition with Graph Neural Networks. Ruiyu Li, Makarand Tapaswi, Renjie Liao, Jiaya Jia, Raquel Urtasun, Sanja Fidler. ICCV 2017.

    https://arxiv.org/pdf/1708.04320

  • Image generation from scene graphs. Justin Johnson, Agrim Gupta, Li Fei-Fei. CVPR 2018.

    https://arxiv.org/pdf/1804.01622.pdf

  • PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas. CVPR 2018.

    https://arxiv.org/pdf/1612.00593.pdf

  • Iterative visual reasoning beyond convolutions. Xinlei Chen, Li-Jia Li, Li Fei-Fei, Abhinav Gupta. CVPR 2018.

    https://arxiv.org/pdf/1803.11189.pdf

  • Large-scale point cloud semantic segmentation with superpoint graphs. Loic Landrieu, Martin Simonovsky. CVPR 2018.

    https://arxiv.org/pdf/1711.09869.pdf

  • Learning Conditioned Graph Structures for Interpretable Visual Question Answering. Will Norcliffe-Brown, Efstathios Vafeias, Sarah Parisot. NeurIPS 2018.

    https://arxiv.org/pdf/1806.07243

  • Out of the box: Reasoning with graph convolution nets for factual visual question answering. Medhini Narasimhan, Svetlana Lazebnik, Alexander G. Schwing. NeurIPS 2018.

    https://arxiv.org/pdf/1811.00538.pdf

  • Symbolic Graph Reasoning Meets Convolutions. Xiaodan Liang, Zhiting Hu, Hao Zhang, Liang Lin, Eric P. Xing. NeurIPS 2018.

    http://papers.nips.cc/paper/7456-symbolic-graph-reasoning-meets-convolutions.pdf

  • Few-shot learning with graph neural networks. Victor Garcia, Joan Bruna. ICLR 2018.

    https://arxiv.org/abs/1711.04043

  • Factorizable net: an efficient subgraph-based framework for scene graph generation. Yikang Li, Wanli Ouyang, Bolei Zhou, Jianping Shi, Chao Zhang, Xiaogang Wang. ECCV 2018.

    https://arxiv.org/abs/1806.11538

  • Graph r-cnn for scene graph generation. Jianwei Yang, Jiasen Lu, Stefan Lee, Dhruv Batra, Devi Parikh. ECCV 2018.

    https://arxiv.org/pdf/1808.00191.pdf

  • Learning Human-Object Interactions by Graph Parsing Neural Networks. Siyuan Qi, Wenguan Wang, Baoxiong Jia, Jianbing Shen, Song-Chun Zhu. ECCV 2018.

    https://arxiv.org/pdf/1808.07962.pdf

  • Neural graph matching networks for fewshot 3d action recognition. Michelle Guo, Edward Chou, De-An Huang, Shuran Song, Serena Yeung, Li Fei-Fei ECCV 2018.

    http://openaccess.thecvf.com/content_ECCV_2018/papers/Michelle_Guo_Neural_Graph_Matching_ECCV_2018_paper.pdf

  • Rgcnn: Regularized graph cnn for point cloud segmentation. Gusi Te, Wei Hu, Zongming Guo, Amin Zheng. 2018.

    https://arxiv.org/pdf/1806.02952.pdf

  • Dynamic graph cnn for learning on point clouds. Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, Justin M. Solomon. 2018.

    https://arxiv.org/pdf/1801.07829.pdf

02自然语言处理(NLP)

  • Encoding Sentences with Graph Convolutional Networks for Semantic Role Labeling. Diego Marcheggiani, Ivan Titov.EMNLP 2017.

    https://arxiv.org/abs/1703.04826

  • Graph Convolutional Encoders for Syntax-aware Neural Machine Translation. Joost Bastings, Ivan Titov, Wilker Aziz, Diego Marcheggiani, Khalil Sima'an. EMNLP 2017.

    https://arxiv.org/pdf/1704.04675

  • Diffusion maps for textual network embedding. Xinyuan Zhang, Yitong Li, Dinghan Shen, Lawrence Carin. NeurIPS 2018.

    https://arxiv.org/pdf/1805.09906.pdf

  • A Graph-to-Sequence Model for AMR-to-Text Generation. Linfeng Song, Yue Zhang, Zhiguo Wang, Daniel Gildea. ACL 2018.

    https://arxiv.org/abs/1805.02473

  • Graph-to-Sequence Learning using Gated Graph Neural Networks. Daniel Beck, Gholamreza Haffari, Trevor Cohn. ACL 2018.

    https://arxiv.org/pdf/1806.09835.pdf

  • Cross-lingual Knowledge Graph Alignment via Graph Convolutional Networks. Zhichun Wang, Qingsong Lv, Xiaohan Lan, Yu Zhang. EMNLP 2018.

    http://www.aclweb.org/anthology/D18-1032

  • Graph Convolution over Pruned Dependency Trees Improves Relation Extraction. Yuhao Zhang, Peng Qi, Christopher D. Manning. EMNLP 2018.

    https://arxiv.org/pdf/1809.10185

  • Multiple Events Extraction via Attention-based Graph Information Aggregation. Xiao Liu, Zhunchen Luo, Heyan Huang.EMNLP 2018.

    https://arxiv.org/pdf/1809.09078.pdf

  • Exploiting Semantics in Neural Machine Translation with Graph Convolutional Networks. Diego Marcheggiani, Joost Bastings, Ivan Titov. NAACL 2018.

    http://www.aclweb.org/anthology/N18-2078

  • Graph Convolutional Networks for Text Classification. Liang Yao, Chengsheng Mao, Yuan Luo. AAAI 2019.

    https://arxiv.org/pdf/1809.05679.pdf

03互联网

  • Graph Convolutional Networks with Argument-Aware Pooling for Event Detection. Thien Huu Nguyen, Ralph Grishman. AAAI 2018.

    http://ix.cs.uoregon.edu/~thien/pubs/graphConv.pdf

  • Semi-supervised User Geolocation via Graph Convolutional Networks. Afshin Rahimi, Trevor Cohn, Timothy Baldwin.ACL 2018.

    https://arxiv.org/pdf/1804.08049.pdf

  • Adversarial attacks on neural networks for graph data. Daniel Zügner, Amir Akbarnejad, Stephan Günnemann. KDD 2018.

    https://arxiv.org/pdf/1805.07984.pdf

  • Deepinf: Social influence prediction with deep learning. Jiezhong Qiu, Jian Tang, Hao Ma, Yuxiao Dong, Kuansan Wang, Jie Tang. KDD 2018.

    https://arxiv.org/pdf/1807.05560.pdf

04推荐系统

  • Geometric Matrix Completion with Recurrent Multi-Graph Neural Networks. Federico Monti, Michael M. Bronstein, Xavier Bresson. NIPS 2017.

    https://arxiv.org/abs/1704.06803

  • Graph Convolutional Matrix Completion. Rianne van den Berg, Thomas N. Kipf, Max Welling. 2017.

    https://arxiv.org/abs/1706.02263

  • Graph Convolutional Neural Networks for Web-Scale Recommender Systems. Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, Jure Leskovec. KDD 2018.

    https://arxiv.org/pdf/1806.01973.pdf

  • Session-based Recommendation with Graph Neural Networks. Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, Tieniu Tan. AAAI 2019.

    https://arxiv.org/pdf/1811.00855.pdf

05医疗健康

  • Gram:graph-based attention model for healthcare representation learning Edward Choi, Mohammad Taha Bahadori, Le Song, Walter F. Stewart, Jimeng Sun. KDD 2017.

    https://arxiv.org/pdf/1611.07012.pdf

  • MILE: A Multi-Level Framework for Scalable Graph Embedding. Jiongqian Liang, Saket Gurukar, Srinivasan Parthasarathy.

    https://arxiv.org/pdf/1802.09612.pdf

  • Hybrid Approach of Relation Network and Localized Graph Convolutional Filtering for Breast Cancer Subtype Classification. Sungmin Rhee, Seokjun Seo, Sun Kim. IJCAI 2018.

    https://arxiv.org/abs/1711.05859

  • GAMENet: Graph Augmented MEmory Networks for Recommending Medication Combination. Junyuan Shang, Cao Xiao, Tengfei Ma, Hongyan Li, Jimeng Sun. AAAI 2019.

    https://arxiv.org/pdf/1809.01852.pdf

06化学

  • Molecular Graph Convolutions: Moving Beyond Fingerprints. Steven Kearnes, Kevin McCloskey, Marc Berndl, Vijay Pande, Patrick Riley. Journal of computer-aided molecular design 2016.

    https://arxiv.org/pdf/1603.00856.pdf

  • Protein interface prediction using graph convolutional networks. Alex Fout, Jonathon Byrd, Basir Shariat, Asa Ben-Hur.NIPS 2017.

    https://papers.nips.cc/paper/7231-protein-interface-prediction-using-graph-convolutional-networks.pdf

  • Modeling polypharmacy side effects with graph convolutional networks. Marinka Zitnik, Monica Agrawal, Jure Leskovec. ISMB 2018.

    https://arxiv.org/abs/1802.00543

07物理学

  • Interaction Networks for Learning about Objects, Relations and Physics. Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Rezende, Koray Kavukcuoglu. NIPS 2016.

    https://arxiv.org/pdf/1612.00222.pdf

  • Vain: Attentional multi-agent predictive modeling. Yedid Hoshen. NIPS 2017

    https://arxiv.org/pdf/1706.06122.pdf

08其他领域

  • Learning to represent programs with graphs. Miltiadis Allamanis, Marc Brockschmidt, Mahmoud Khademi. ICLR 2017.

    https://arxiv.org/pdf/1711.00740.pdf

  • Combinatorial Optimization with Graph Convolutional Networks and Guided Tree Search. Zhuwen Li, Qifeng Chen, Vladlen Koltun. NeurIPS 2018.

    http://papers.nips.cc/paper/7335-combinatorial-optimization-with-graph-convolutional-networks-and-guided-tree-search.pdf

  • Recurrent Relational Networks. Rasmus Palm, Ulrich Paquet, Ole Winther. NeurIPS 2018.

    http://papers.nips.cc/paper/7597-recurrent-relational-networks.pdf

  • NerveNet: Learning Structured Policy with Graph Neural Networks. Tingwu Wang, Renjie Liao, Jimmy Ba, Sanja Fidler.ICLR 2018.

    https://openreview.net/pdf?id=S1sqHMZCb

05文库

  • pytorch geometric(Pytorch几何)

    https://github.com/rusty1s/pytorch_geometric

  • deep graph library(深度图像库)

    https://github.com/dmlc/dgl

  • graph nets library(图像网络库)

    https://github.com/deepmind/graph_nets

星标我,每天多一点智慧

Github项目推荐-图神经网络(GNN)相关资源大列表的更多相关文章

  1. zz【清华NLP】图神经网络GNN论文分门别类,16大应用200+篇论文最新推荐

    [清华NLP]图神经网络GNN论文分门别类,16大应用200+篇论文最新推荐 图神经网络研究成为当前深度学习领域的热点.最近,清华大学NLP课题组Jie Zhou, Ganqu Cui, Zhengy ...

  2. 图机器学习(GML)&图神经网络(GNN)原理和代码实现(前置学习系列二)

    项目链接:https://aistudio.baidu.com/aistudio/projectdetail/4990947?contributionType=1 欢迎fork欢迎三连!文章篇幅有限, ...

  3. OpenResty / Nginx模块,Lua库和相关资源的列表

    OpenResty / Nginx模块,Lua库和相关资源的列表 什么是OpenResty OpenResty是一个成熟的网络平台,它集成了标准的Nginx核心,LuaJIT,许多精心编写的Lua库, ...

  4. 【GNN】图神经网络小结

    图神经网络小结 图神经网络小结 图神经网络分类 GCN: 由谱方法到空域方法 GCN概述 GCN的输出机制 GCN的不同方法 基于谱方法的GCN 初始 切比雪夫K阶截断: ChebNet 一阶Cheb ...

  5. 图神经网络(GNN)--slide

    课件是学习小组汇报时用的,许多资料是从大佬哪里搬运的.Tex文档也在里面. GNN课件,下载不了,可以点击 带你入门图神经网络(GNN) 图神经网络(GNN)学习推荐网址 傅里叶分析之掐死教程(完整版 ...

  6. GNN 相关资料记录;GCN 与 graph embedding 相关调研;社区发现算法相关;异构信息网络相关;

    最近做了一些和gnn相关的工作,经常听到GCN 和 embedding 相关技术,感觉很是困惑,所以写下此博客,对相关知识进行索引和记录: 参考链接: https://www.toutiao.com/ ...

  7. GNN 相关资料记录;GCN 与 graph embedding 相关调研

    最近做了一些和gnn相关的工作,经常听到GCN 和 embedding 相关技术,感觉很是困惑,所以写下此博客,对相关知识进行索引和记录: 参考链接: https://www.toutiao.com/ ...

  8. 知识图谱-生物信息学-医学顶刊论文(Bioinformatics-2021)-KG4SL:用于人类癌症综合致死率预测的知识图神经网络

    5.(2021.7.12)Bioinformatics-KG4SL:用于人类癌症综合致死率预测的知识图神经网络 论文标题:KG4SL: knowledge graph neural network f ...

  9. 28款GitHub最流行的开源机器学习项目,推荐GitHub上10 个开源深度学习框架

    20 个顶尖的 Python 机器学习开源项目 机器学习 2015-06-08 22:44:30 发布 您的评价: 0.0 收藏 1收藏 我们在Github上的贡献者和提交者之中检查了用Python语 ...

随机推荐

  1. CXF整合spring

    近公司需要弄webservics,还说不用框架整合(提倡使用hessian,他们既然说与操作系统有兼容问题,由于人员单薄,不得不屈服,哎),我想了老半天没弄明白他说的不用框架整合spring,尝试过直 ...

  2. 在Workload Automation中实现suspend分析

    1. 背景 这里涉及到两个工具analyze_suspend.py和Workload Automation. 下面analyze_suspend.py简称为ASPY,Workload Automati ...

  3. Sublime Text 3安装SFTP插件

    前言: 最近在学习网页设计,陆续接触到了HTML.CSS和JavaScript,写的代码越来越多了,也越来越感觉到将代码上传到服务器上的流程太繁琐了.一开始我是用虚拟主机提供的控制面板下载上传网页代码 ...

  4. JavaWeb学习(一) ---- HTTP以及Tomcat的安装及使用

    HTTP 一.协议 双方在交互.通讯的时候,遵循的一种规范,一种规则. 二.HTTP协议 HTTP的全名是:Hypertext Transfer Protocol(超文本传输协议),针对网络上的客户端 ...

  5. 解决_CRT_SECURE_NO_WARNINGS警告

    VS中: 工程属性->属性->配置属性->C/C++->命令行 在命令行中添加一行: /D _CRT_SECURE_NO_WARNINGS OK!

  6. Zepto源码(2016)——Zepto模块(核心模块)

    // Zepto.js // (c) 2010-2016 Thomas Fuchs // Zepto.js may be freely distributed under the MIT licens ...

  7. Android 自定义控件 轻松实现360软件详情页

    转载请标明出处:http://blog.csdn.net/lmj623565791/article/details/43649913,本文出自:[张鸿洋的博客] 1.概述 最近有不少朋友私聊问应用宝. ...

  8. 转载:selenium的wait.until()

    package com.test.elementwait; import org.openqa.selenium.By;import org.openqa.selenium.WebDriver;imp ...

  9. 绕过token

    网站搭好了,下一步的目标就是直奔后台.因为一般前端在未登录的情况下只有查的功能.咱们的目标是增删改. 看到有添加功能时,先别着急的直接黑盒测试.先看看有没有防护 ######## 查看源码,搜索tok ...

  10. 【HEOI 2018】Day2 T2 林克卡特树

    题目大意: 给一个n个节点的树,然后将其分成k+1个联通块,再在每个联通块取一条路径,将其连接起来,求连接起来的路径最大权值. 题解: 考场只会20分,还都打挂了…… 60分的做法其实并不难,nk D ...