题目分析:

首先打个暴力求一下$10^9$以内因子最多的数的因子个数,发现只有$1344$个。

由于有$ax+by=k*(a,b)$和2017年noip的结论,所以我们可以发现对于任意多个数$a_1,a_2,a_3,...,a_n$他们能组成的数是$k$倍的最大公约数,$k$任取。我们发现如果$gcd%p$不是$w$的因子那么不行,否则可行。所以把$a$数组全部模$p$,再归类为每个因子,再处理相互之间能构建出来的$gcd$,再用莫比乌斯函数做一下容斥,再处理出每个因子的因子和,再对每个输入的$w$模$p$,答案可以$O(1)$回答。

代码:

 #include<bits/stdc++.h>
using namespace std; const int maxn = ;
const int MXF = ;
const int mod = 1e9+; int n,q,p;
int fac[MXF],dt[MXF],num;
int a[maxn],chs[MXF],mu[MXF];
int pw2[maxn]; int gcd(int a,int b){
if(!b) return a;
else return gcd(b,a%b);
} void divide(){
for(int i=;i*i<=p;i++){
if(p%i) continue;
if(i*i == p) fac[++num] = i;
else{
fac[++num] = i;
fac[++num] = p/i;
}
}
sort(fac+,fac+num+);
} void read(){
scanf("%d%d%d",&n,&q,&p);
divide();
for(int i=;i<=n;i++) scanf("%d",&a[i]),a[i] = gcd(a[i],p);
for(int i=;i<=n;i++){
int z = lower_bound(fac+,fac+num+,a[i])-fac;
dt[z]++;
}
for(int i=;i<=num;i++){
int hh = fac[i]; mu[i] = ;
for(int j=;j*j<=hh;j++){
int cnt = ;
while(hh % j == ) cnt++,hh/=j;
if(cnt > )mu[i] = ;
else if(cnt) mu[i] = 1ll*mu[i]*(mod-)%mod;
}
if(hh != ){mu[i] = 1ll*mu[i]*(mod-)%mod;}
}
} void work(){
pw2[] = ; for(int i=;i<=n;i++) pw2[i] = pw2[i-]*%mod;
for(int i=;i<=num;i++){
int z = ;
for(int j=i;j<=num;j++){
if(fac[j] % fac[i] == ) z+=dt[j];
}
chs[i] = (pw2[z]-)%mod;
}
for(int i=;i<=num;i++){
for(int j=i+;j<=num;j++){
if(fac[j] % fac[i]) continue;
int ct = lower_bound(fac+,fac+num+,fac[j]/fac[i])-fac;
chs[i] = chs[i]+1ll*mu[ct]*chs[j]%mod; chs[i] %= mod;
}
}
for(int i=num;i>=;i--){
for(int j=;j<i;j++){
if(fac[i] % fac[j] == ) chs[i] += chs[j],chs[i] %= mod;
}
}
for(int i=;i<=q;i++){
int x; scanf("%d",&x); x = gcd(x,p);
x = lower_bound(fac+,fac+num+,x)-fac;
printf("%d\n",chs[x]);
}
} int main(){
read();
work();
return ;
}

Luogu4495 [HAOI2018] 奇怪的背包 【扩展欧几里得算法】的更多相关文章

  1. noip知识点总结之--欧几里得算法和扩展欧几里得算法

    一.欧几里得算法 名字非常高大上的不一定难,比如欧几里得算法...其实就是求两个正整数a, b的最大公约数(即gcd),亦称辗转相除法 需要先知道一个定理: gcd(a, b) = gcd(b, a  ...

  2. 扩展欧几里得算法(extgcd)

    相信大家对欧几里得算法,即辗转相除法不陌生吧. 代码如下: int gcd(int a, int b){ return !b ? gcd(b, a % b) : a; } 而扩展欧几里得算法,顾名思义 ...

  3. 欧几里得算法与扩展欧几里得算法_C++

    先感谢参考文献:http://www.cnblogs.com/frog112111/archive/2012/08/19/2646012.html 注:以下讨论的数均为整数 一.欧几里得算法(重点是证 ...

  4. vijos1009:扩展欧几里得算法

    1009:数论 扩展欧几里得算法 其实自己对扩展欧几里得算法一直很不熟悉...应该是因为之前不太理解的缘故吧这次再次思考,回看了某位大神的推导以及某位大神的模板应该算是有所领悟了 首先根据题意:L1= ...

  5. ****ural 1141. RSA Attack(RSA加密,扩展欧几里得算法)

    1141. RSA Attack Time limit: 1.0 secondMemory limit: 64 MB The RSA problem is the following: given a ...

  6. 浅谈扩展欧几里得算法(exgcd)

    在讲解扩展欧几里得之前我们先回顾下辗转相除法: \(gcd(a,b)=gcd(b,a\%b)\)当a%b==0的时候b即为所求最大公约数 好了切入正题: 简单地来说exgcd函数求解的是\(ax+by ...

  7. (light oj 1306) Solutions to an Equation 扩展欧几里得算法

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1306 You have to find the number of solutions ...

  8. 『扩展欧几里得算法 Extended Euclid』

    Euclid算法(gcd) 在学习扩展欧几里得算法之前,当然要复习一下欧几里得算法啦. 众所周知,欧几里得算法又称gcd算法,辗转相除法,可以在\(O(log_2b)\)时间内求解\((a,b)\)( ...

  9. 【BZOJ5302】[HAOI2018]奇怪的背包(动态规划,容斥原理)

    [BZOJ5302][HAOI2018]奇怪的背包(动态规划,容斥原理) 题面 BZOJ 洛谷 题解 为啥泥萌做法和我都不一样啊 一个重量为\(V_i\)的物品,可以放出所有\(gcd(V_i,P)\ ...

随机推荐

  1. Spring Cloud Alibaba基础教程:Sentinel使用Apollo存储规则

    上一篇我们介绍了如何通过Nacos的配置功能来存储限流规则.Apollo是国内用户非常多的配置中心,所以,今天我们继续说说Spring Cloud Alibaba Sentinel中如何将流控规则存储 ...

  2. [Javascript] encodeURIComponent()方法

    在vue項目中使用vue-router通过url进行传值 encodeURIComponent encodeURIComponent() 函数可把字符串作为 URI 组件进行编码.encodeURIC ...

  3. QLineEdit拾遗:数据的过滤、验证和补全

    QLineEdit是使用频率最高的控件之一,当我们想获取用户输入时自然而然得会用到它. 通常我们会将QLineEdit的信号或其他控件的信号绑定至槽函数,然后获取并处理编辑器内的数据.你会觉得我们拿到 ...

  4. Docker在Linux上运行NetCore系列(三)在Linux上使用Docker运行Asp.NetCore

    转发请注明此文章作者与路径,请尊重原著,违者必究. 系列文章:https://www.cnblogs.com/alunchen/p/10121379.html 开始说明 上几篇文章都是通过Linux运 ...

  5. javascript小记三则:ASP.NET启动web调试,窗体自动放大的方法

    源码如下,简单一句JS,轻松解决窗体不会自动放大的浏览器: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN& ...

  6. 上传图片截图预览控件不显示cropper.js 跨域问题

    上传图片到图片服务器,因为域名不同,多以会有跨域问题. No 'Access-Control-Allow-Origin' header is present on the requested reso ...

  7. Android Studio教程06-布局,监听器以及基本控件

    目录 2. 监听器 3. 布局 3.1. 布局分类 (1). Linear Layout (2). Relative Layout (3). ListView (4). Grid View 4. 其他 ...

  8. TTL与非门电路分析

    TTL与非门(TTL推挽式与非门)是TTL集成逻辑门的一种,主要由三极管和二极管构成.如图(a)所示,它由输入级,中间级,输出级三部分组成.TTL与非门的优点在于输出阻抗低,带负载能力强,工作速度快. ...

  9. 轻松学习UML之类图,状态图

    本文主要讲解UML图中的类图与状态图相关内容,如有不足之处,还请指正. 概述 统一建模语言(UML,UnifiedModelingLanguage)是面向对象软件的标准化建模语言,UML因其简单.统一 ...

  10. Java基础系列--01_基础类型

    J2SE.J2ME.J2EE分别指什么? J2SE 基础版,桌面应用. J2ME 微型版,手机开发.(android,ios) J2EE 企业版,所有浏览器访问的应用程序. 注意:JDK5以后改名 J ...