题目分析:

首先打个暴力求一下$10^9$以内因子最多的数的因子个数,发现只有$1344$个。

由于有$ax+by=k*(a,b)$和2017年noip的结论,所以我们可以发现对于任意多个数$a_1,a_2,a_3,...,a_n$他们能组成的数是$k$倍的最大公约数,$k$任取。我们发现如果$gcd%p$不是$w$的因子那么不行,否则可行。所以把$a$数组全部模$p$,再归类为每个因子,再处理相互之间能构建出来的$gcd$,再用莫比乌斯函数做一下容斥,再处理出每个因子的因子和,再对每个输入的$w$模$p$,答案可以$O(1)$回答。

代码:

 #include<bits/stdc++.h>
using namespace std; const int maxn = ;
const int MXF = ;
const int mod = 1e9+; int n,q,p;
int fac[MXF],dt[MXF],num;
int a[maxn],chs[MXF],mu[MXF];
int pw2[maxn]; int gcd(int a,int b){
if(!b) return a;
else return gcd(b,a%b);
} void divide(){
for(int i=;i*i<=p;i++){
if(p%i) continue;
if(i*i == p) fac[++num] = i;
else{
fac[++num] = i;
fac[++num] = p/i;
}
}
sort(fac+,fac+num+);
} void read(){
scanf("%d%d%d",&n,&q,&p);
divide();
for(int i=;i<=n;i++) scanf("%d",&a[i]),a[i] = gcd(a[i],p);
for(int i=;i<=n;i++){
int z = lower_bound(fac+,fac+num+,a[i])-fac;
dt[z]++;
}
for(int i=;i<=num;i++){
int hh = fac[i]; mu[i] = ;
for(int j=;j*j<=hh;j++){
int cnt = ;
while(hh % j == ) cnt++,hh/=j;
if(cnt > )mu[i] = ;
else if(cnt) mu[i] = 1ll*mu[i]*(mod-)%mod;
}
if(hh != ){mu[i] = 1ll*mu[i]*(mod-)%mod;}
}
} void work(){
pw2[] = ; for(int i=;i<=n;i++) pw2[i] = pw2[i-]*%mod;
for(int i=;i<=num;i++){
int z = ;
for(int j=i;j<=num;j++){
if(fac[j] % fac[i] == ) z+=dt[j];
}
chs[i] = (pw2[z]-)%mod;
}
for(int i=;i<=num;i++){
for(int j=i+;j<=num;j++){
if(fac[j] % fac[i]) continue;
int ct = lower_bound(fac+,fac+num+,fac[j]/fac[i])-fac;
chs[i] = chs[i]+1ll*mu[ct]*chs[j]%mod; chs[i] %= mod;
}
}
for(int i=num;i>=;i--){
for(int j=;j<i;j++){
if(fac[i] % fac[j] == ) chs[i] += chs[j],chs[i] %= mod;
}
}
for(int i=;i<=q;i++){
int x; scanf("%d",&x); x = gcd(x,p);
x = lower_bound(fac+,fac+num+,x)-fac;
printf("%d\n",chs[x]);
}
} int main(){
read();
work();
return ;
}

Luogu4495 [HAOI2018] 奇怪的背包 【扩展欧几里得算法】的更多相关文章

  1. noip知识点总结之--欧几里得算法和扩展欧几里得算法

    一.欧几里得算法 名字非常高大上的不一定难,比如欧几里得算法...其实就是求两个正整数a, b的最大公约数(即gcd),亦称辗转相除法 需要先知道一个定理: gcd(a, b) = gcd(b, a  ...

  2. 扩展欧几里得算法(extgcd)

    相信大家对欧几里得算法,即辗转相除法不陌生吧. 代码如下: int gcd(int a, int b){ return !b ? gcd(b, a % b) : a; } 而扩展欧几里得算法,顾名思义 ...

  3. 欧几里得算法与扩展欧几里得算法_C++

    先感谢参考文献:http://www.cnblogs.com/frog112111/archive/2012/08/19/2646012.html 注:以下讨论的数均为整数 一.欧几里得算法(重点是证 ...

  4. vijos1009:扩展欧几里得算法

    1009:数论 扩展欧几里得算法 其实自己对扩展欧几里得算法一直很不熟悉...应该是因为之前不太理解的缘故吧这次再次思考,回看了某位大神的推导以及某位大神的模板应该算是有所领悟了 首先根据题意:L1= ...

  5. ****ural 1141. RSA Attack(RSA加密,扩展欧几里得算法)

    1141. RSA Attack Time limit: 1.0 secondMemory limit: 64 MB The RSA problem is the following: given a ...

  6. 浅谈扩展欧几里得算法(exgcd)

    在讲解扩展欧几里得之前我们先回顾下辗转相除法: \(gcd(a,b)=gcd(b,a\%b)\)当a%b==0的时候b即为所求最大公约数 好了切入正题: 简单地来说exgcd函数求解的是\(ax+by ...

  7. (light oj 1306) Solutions to an Equation 扩展欧几里得算法

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1306 You have to find the number of solutions ...

  8. 『扩展欧几里得算法 Extended Euclid』

    Euclid算法(gcd) 在学习扩展欧几里得算法之前,当然要复习一下欧几里得算法啦. 众所周知,欧几里得算法又称gcd算法,辗转相除法,可以在\(O(log_2b)\)时间内求解\((a,b)\)( ...

  9. 【BZOJ5302】[HAOI2018]奇怪的背包(动态规划,容斥原理)

    [BZOJ5302][HAOI2018]奇怪的背包(动态规划,容斥原理) 题面 BZOJ 洛谷 题解 为啥泥萌做法和我都不一样啊 一个重量为\(V_i\)的物品,可以放出所有\(gcd(V_i,P)\ ...

随机推荐

  1. aspx中的checkbox 取值问题

    问题:前台checkbox控件,选中值为1,不选值为0: 解决方案: 插入一行 <input type="hidden" name="RemberPwd" ...

  2. Java web的一些面试题

    1.Tomcat 的优化经验 答:去掉对 web.xml 的监视,把 jsp 提前编辑成 Servlet. 有富余物理内存的情况,加大 tomcat 使用的 jvm 的内存 2.HTTP 请求的 GE ...

  3. Servlet练习:实现增删改查的综合练习

    ---恢复内容开始--- 本文为原创,转载请注明出处:https://www.cnblogs.com/Tom-shushu/p/9383066.html 本篇内容主要介绍:通过Servlet,JSP, ...

  4. 好代码是管出来的——C#的代码规范

    代码是软件开发过程的产物,代码的作用是通过编译器编译后运行,达到预期的效果(功能.稳定性.安全性等等),而另外一个重要作用是给人阅读.对于机器来说只要代码正确就能够正确的运行程序,但是人不同,如果代码 ...

  5. git常用命令说明教程

    git常用命令说明教程 git介绍 是一个分布式的,版本控制软件.每台使用git的电脑都是一个分版本库.svn是集中管理的. 安装git 一 git相关操作 1.官网下载最新版安装https://gi ...

  6. 写一函数,用来求表达式1+2+3+.....+n的值,并编写主函数

    Description 写一函数,用来求表达式1+2+3+.....+n的值,并编写主函数.n由键盘输入. Input 输入一个整数 Output 输出表达式的值 Sample Input 5 Sam ...

  7. centos7下给bond网卡配置bridge桥接

    这篇的主题可以用几个关键字组合:centos7+kvm + bond + bridge .brige主要用在KVM虚拟化环境下,而bond是进行物理层面的冗余.具体配置信息如下 物理网卡名称:enp0 ...

  8. fullcalendar日历插件的使用并动态增删改查

    我上个项目是做了一个关于教育方面的web端页面,其中的课程表就要用到fullcalendar日历插件,刚开始也是不会用,因为以前也没用过,后面也是看官方文档,问同事,最后完成了这个课程表,个人感觉fu ...

  9. 从Java小白到阿里巴巴工程师,回顾我两年来的学习经历

    添加描述

  10. Android Studio自定义注释模板

    一.自定义新建文件时生成的注释 setting->Editor->File and Code Templates->Includes->File Header,在这里输入自定义 ...