题目大意

  有两个排列 \(p,q\),其中有一些位置是空的。

  你要补全这两个排列。

  定义 \(s(p,q)\) 为 每次交换 \(p\) 中的两个数,让 \(p=q\) 的最小操作次数。

  求 \(s(p,q)=0,1,2,\ldots,n-1\) 的方案数。

  \(n\leq 300\)

题解

  考虑 \(s(p,q)\) 怎么求。

  对于每一个 \(i\),连一条有向边 \(p_i\to q_i\)。那么 \(s(p,q)\) 就是 \(n-\) 图中环的个数。

  先把 \(p,q\) 对应的图建出来,处理一下,算出 \(x\to ?,?\to x,x\to x,?\to ?\) 的边的个数,记为 \(s_1,s_2,s_3,s_4\)。

  有一个结论:如果一个环里面同时有前两种边,那么一定有第四种边。

  记 \(f_i\) 为用第一种边搞出了 \(i\) 个环的方案数

  枚举选了几条边,剩下的边就拿去和第四种边插在一起

\[f_i=\sum_{j=i}^a\binom{a}{j}\begin{bmatrix}j\\i\end{bmatrix}\frac{(d+a-j-1)!}{(d-1)!}
\]

  \(g_i\) 为用第二种边搞出了 \(j\) 个环的方案数

  最后第四种边搞出 \(i\) 个环的方案数 是

\[h_i=\begin{bmatrix}d\\i\end{bmatrix}
\]

  因为编号可以随便选,所以还要乘上 \(d!\)

  把这三个方案数卷在一起就好了。

  时间复杂度:\(O(n^2)\)

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
#include<functional>
#include<cmath>
#include<vector>
#include<assert.h>
//using namespace std;
using std::min;
using std::max;
using std::swap;
using std::sort;
using std::reverse;
using std::random_shuffle;
using std::lower_bound;
using std::upper_bound;
using std::unique;
using std::vector;
typedef long long ll;
typedef unsigned long long ull;
typedef double db;
typedef std::pair<int,int> pii;
typedef std::pair<ll,ll> pll;
void open(const char *s){
#ifndef ONLINE_JUDGE
char str[100];sprintf(str,"%s.in",s);freopen(str,"r",stdin);sprintf(str,"%s.out",s);freopen(str,"w",stdout);
#endif
}
void open2(const char *s){
#ifdef DEBUG
char str[100];sprintf(str,"%s.in",s);freopen(str,"r",stdin);sprintf(str,"%s.out",s);freopen(str,"w",stdout);
#endif
}
int rd(){int s=0,c,b=0;while(((c=getchar())<'0'||c>'9')&&c!='-');if(c=='-'){c=getchar();b=1;}do{s=s*10+c-'0';}while((c=getchar())>='0'&&c<='9');return b?-s:s;}
void put(int x){if(!x){putchar('0');return;}static int c[20];int t=0;while(x){c[++t]=x%10;x/=10;}while(t)putchar(c[t--]+'0');}
int upmin(int &a,int b){if(b<a){a=b;return 1;}return 0;}
int upmax(int &a,int b){if(b>a){a=b;return 1;}return 0;}
const int N=310;
const ll p=998244353;
int fa[N],e1[N],e2[N];
int a[N],b[N];
int n;
int find(int x)
{
return fa[x]==x?x:fa[x]=find(fa[x]);
}
void merge(int x,int y)
{
x=find(x);
y=find(y);
e2[x]++;
if(x==y)
return;
e1[y]+=e1[x];
e2[y]+=e2[x];
fa[x]=y;
}
int s1,s2,s3,s4;
ll fac[N],ifac[N],inv[N];
ll f[N],g[N],h[N];
ll ans1[N],ans2[N];
ll s[N][N];
int deg[N];
int c[N];
int c1[N],c2[N],d1[N],d2[N];
ll binom(int x,int y)
{
return fac[x]*ifac[y]%p*ifac[x-y]%p;
}
int main()
{
open("cf715e");
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
for(int i=1;i<=n;i++)
scanf("%d",&b[i]);
for(int i=1;i<=n;i++)
{
fa[i]=i;
e1[i]=1;
}
for(int i=1;i<=n;i++)
if(a[i]&&b[i])
merge(a[i],b[i]);
for(int i=1;i<=n;i++)
{
if(a[i]&&find(a[i])==find(b[i])&&e1[a[i]]==e2[a[i]])
{
if(find(a[i])==a[i])
s3++;
}
if(a[i])
a[i]=find(a[i]);
if(b[i])
b[i]=find(b[i]);
if(a[i]&&b[i]!=a[i])
{
c1[a[i]]=1;
d1[a[i]]=bool(b[i]);
}
if(b[i]&&a[i]!=b[i])
{
c2[b[i]]=1;
d2[b[i]]=bool(a[i]);
}
}
for(int i=1;i<=n;i++)
if(!a[i]&&!b[i])
s4++;
for(int i=1;i<=n;i++)
{
if(c1[i]&&c2[i]&&!d1[i]&&!d2[i])
s4++;
else
{
if(c1[i]&&!d1[i])
s1++;
if(c2[i]&&!d2[i])
s2++;
}
}
fac[0]=fac[1]=ifac[0]=ifac[1]=inv[1]=1;
for(int i=2;i<=n;i++)
{
inv[i]=(-p/i*inv[p%i]%p+p)%p;
fac[i]=fac[i-1]*i%p;
ifac[i]=ifac[i-1]*inv[i]%p;
}
s[0][0]=1;
for(int i=1;i<=n;i++)
for(int j=1;j<=i;j++)
s[i][j]=(s[i-1][j-1]+s[i-1][j]*(i-1))%p;
if(s4)
{
for(int i=0;i<=s1;i++)
for(int j=i;j<=s1;j++)
f[i]=(f[i]+binom(s1,j)*s[j][i]%p*fac[s4+s1-j-1]%p*ifac[s4-1])%p;
for(int i=0;i<=s2;i++)
for(int j=i;j<=s2;j++)
g[i]=(g[i]+binom(s2,j)*s[j][i]%p*fac[s4+s2-j-1]%p*ifac[s4-1])%p;
for(int i=0;i<=s4;i++)
h[i]=s[s4][i]*fac[s4]%p;
}
else
{
for(int i=0;i<=s1;i++)
f[i]=s[s1][i];
for(int i=0;i<=s2;i++)
g[i]=s[s2][i];
h[0]=1;
}
for(int i=0;i<=s1;i++)
for(int j=0;j<=s2;j++)
ans1[i+j]=(ans1[i+j]+f[i]*g[j])%p;
for(int i=0;i<=s1+s2;i++)
for(int j=0;j<=s4;j++)
ans2[i+j]=(ans2[i+j]+ans1[i]*h[j])%p;
for(int i=n;i>=1;i--)
printf("%lld ",i-s3>=0?ans2[i-s3]:0);
return 0;
}

【CF715E】Complete the Permutations 第一类斯特林数的更多相关文章

  1. CF715E Complete the Permutations(第一类斯特林数)

    题目 CF715E Complete the Permutations 做法 先考虑无\(0\)排列的最小花费,其实就是沿着置换交换,花费:\(n-\)环个数,所以我们主要是要求出规定环的个数 考虑连 ...

  2. 【CF715E】Complete the Permutations(容斥,第一类斯特林数)

    [CF715E]Complete the Permutations(容斥,第一类斯特林数) 题面 CF 洛谷 给定两个排列\(p,q\),但是其中有些位置未知,用\(0\)表示. 现在让你补全两个排列 ...

  3. Codeforces 715E - Complete the Permutations(第一类斯特林数)

    Codeforces 题面传送门 & 洛谷题面传送门 神仙题.在 AC 此题之前,此题已经在我的任务计划中躺了 5 个月的灰了. 首先考虑这个最短距离是什么东西,有点常识的人(大雾)应该知道, ...

  4. 【UVA 11077】 Find the Permutations (置换+第一类斯特林数)

    Find the Permutations Sorting is one of the most used operations in real life, where Computer Scienc ...

  5. UVA11077 Find the Permutations —— 置换、第一类斯特林数

    题目链接:https://vjudge.net/problem/UVA-11077 题意: 问n的全排列中多有少个至少需要交换k次才能变成{1,2,3……n}. 题解: 1.根据过程的互逆性,可直接求 ...

  6. 【HDU 4372】 Count the Buildings (第一类斯特林数)

    Count the Buildings Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Othe ...

  7. 【组合数学:第一类斯特林数】【HDU3625】Examining the Rooms

    Examining the Rooms Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  8. 如何快速求解第一类斯特林数--nlog^2n + nlogn

    目录 参考资料 前言 暴力 nlog^2n的做法 nlogn的做法 代码 参考资料 百度百科 斯特林数 学习笔记-by zhouzhendong 前言 首先是因为这道题,才去研究了这个玩意:[2019 ...

  9. 【2019雅礼集训】【CF 960G】【第一类斯特林数】【NTT&多项式】permutation

    目录 题意 输入格式 输出格式 思路 代码 题意 找有多少个长度为n的排列,使得从左往右数,有a个元素比之前的所有数字都大,从右往左数,有b个元素比之后的所有数字都大. n<=2*10^5,a, ...

随机推荐

  1. JQ的.serialize()

    前面写的都是用Form表单提交,但是VUE.JS好像不能控制Form的Action. 于是就用AJAX来提交,但是跳转地址(window.location.href=)会暴露数据在url上,就直接用s ...

  2. c# Lambda操作类封装

    using System; using System.Collections.Generic; using System.Linq; using System.Linq.Expressions; us ...

  3. pdf文件下载水印添加的中文与空格问题解决

    public static boolean waterMark(String inputFile, String outputFile, String waterMarkName)throws IOE ...

  4. 05 入门 - 浅谈 ASP.NET MVC程序的工作原理

    目录索引:<ASP.NET MVC 5 高级编程>学习笔记 本篇内容 1. Global.asax文件 2. RouteConfig.cs文件 3. 视图命名和寻址的规则 前面创建了一个简 ...

  5. JS:onmouseover 、onmouseout

    鼠标移动到P标签上时,改变文本和边框样式 <style type="text/css"> .onmouseover { color: red; border: 1px ...

  6. 我们距离AI编程还有多远?

    近几年来,人工智能的信息以不同形式霸占着我们的眼球,我们知道AlphaGo.微软小冰.Sophia,了解过自动驾驶.无人机.智能家居等,深知人工智能是在记忆力.学习力.运算力方面都远超人类的存在,但人 ...

  7. Bootstrap table 行编辑导航

    /*开启表格编辑方向键导航 方向键(←): VK_LEFT (37) 方向键(↑): VK_UP (38) 方向键(→): VK_RIGHT (39) 方向键(↓): VK_DOWN (40) */ ...

  8. eclipse 开发web 项目,使用gradle 需要安装的插件

    1.Buildship Gradle 扩展 eclipse IDE 以支持使用 Gradle 构建软件.此解决方案由 Eclipse 基金会提供 2.EGradle Editor (主要用来编写gra ...

  9. React---入门(1)

    React是什么? React 是一个用于构建用户界面的 JAVASCRIPT 库. React 特点 1.声明式设计 −React采用声明范式,可以轻松描述应用. 2.高效 −React通过对DOM ...

  10. selenium之元素定位-xpath

    被测试网页的HTML代码 <html> <body> <div id="div1" style="text-align:center&quo ...