How far away ?

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 27977    Accepted Submission(s): 11218

Problem Description
There are n houses in the village and some bidirectional roads connecting them. Every day peole always like to ask like this "How far is it if I want to go from house A to house B"? Usually it hard to answer. But luckily int this village the answer is always unique, since the roads are built in the way that there is a unique simple path("simple" means you can't visit a place twice) between every two houses. Yout task is to answer all these curious people.
 
Input
First line is a single integer T(T<=10), indicating the number of test cases.
  For each test case,in the first line there are two numbers n(2<=n<=40000) and m (1<=m<=200),the number of houses and the number of queries. The following n-1 lines each consisting three numbers i,j,k, separated bu a single space, meaning that there is a road connecting house i and house j,with length k(0<k<=40000).The houses are labeled from 1 to n.
  Next m lines each has distinct integers i and j, you areato answer the distance between house i and house j.
 
Output
For each test case,output m lines. Each line represents the answer of the query. Output a bland line after each test case.
 
Sample Input
2
3 2
1 2 10
3 1 15
1 2
2 3

2 2
1 2 100
1 2
2 1

 
Sample Output
10
25
100
100
 
Source
 
Recommend
lcy
看样子是不能用floyd

对于无向图可以随便取一个点当作根节点

先求一遍从根节点到其它节点的距离

然后lca  看代码叭

#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <cctype>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#include <bitset>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define rd(a) scanf("%d", &a)
#define rlld(a) scanf("%lld", &a)
#define rc(a) scanf("%c", &a)
#define rs(a) scanf("%s", a)
#define rb(a) scanf("%lf", &a)
#define rf(a) scanf("%f", &a)
#define pd(a) printf("%d\n", a)
#define plld(a) printf("%lld\n", a)
#define pc(a) printf("%c\n", a)
#define ps(a) printf("%s\n", a)
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff;
int n, m, s;
int anc[maxn][], deep[maxn], vis[maxn];
LL d[maxn];
int head[maxn], cnt;
struct node
{
int u, v, next, c;
}Node[maxn << ]; void add_(int u, int v, int c)
{
Node[cnt].u = u;
Node[cnt].v = v;
Node[cnt].c = c;
Node[cnt].next = head[u];
head[u] = cnt++;
} void add(int u, int v, int c)
{
add_(u, v, c);
add_(v, u, c);
} int dfs(int u, int fa)
{
for(int i = ; i < ; i++)
anc[u][i] = anc[anc[u][i - ]][i - ];
for(int i = head[u]; i != -; i = Node[i].next)
{
int v = Node[i].v;
if(v == fa || deep[v]) continue;
anc[v][] = u;
deep[v] = deep[u] + ;
dfs(v, u);
}
} int lca(int u, int v)
{
if(deep[u] < deep[v]) swap(u, v);
for(int i = - ; i >= ; i--)
if(deep[anc[u][i]] >= deep[v])
u = anc[u][i]; for(int i = - ; i >= ; i--)
{
if(anc[u][i] != anc[v][i])
{
u = anc[u][i];
v = anc[v][i];
}
}
if(u == v) return u;
return anc[u][];
} void spfa()
{
for(int i = ; i < maxn; i++) d[i] = INF;
// cout<< d[2] << endl;
deque<int> Q;
Q.push_back(s);
d[s] = ;
vis[s] = ;
while(!Q.empty())
{
int u = Q.front(); Q.pop_front();
vis[u] = ;
for(int i = head[u]; i != -; i = Node[i].next)
{
int v = Node[i].v;
// cout << v << endl;
if(d[v] > d[u] + Node[i].c)
{
//cout << 2222 << endl;
d[v] = d[u] + Node[i].c;
if(!vis[v])
{
if(Q.empty()) Q.push_front(v);
else if(d[Q.front()] > d[v]) Q.push_front(v);
else Q.push_back(v);
vis[v] = ;
}
}
}
}
} void init()
{
mem(head, -);
cnt = ;
mem(vis, );
mem(anc, );
mem(deep, );
} int main()
{ int T;
rd(T);
while(T--)
{
init();
rd(n), rd(m);
s = ;
for(int i = ; i < n; i++)
{
int u, v, w;
rd(u), rd(v), rd(w);
add(u, v, w);
}
spfa();
deep[s] = ;
dfs(s, -);
for(int i = ; i < m; i++)
{
int u, v;
rd(u), rd(v);
int x = lca(u, v);
printf("%d\n", d[u] + d[v] - * d[x]); } } return ;
}

How far away ? HDU - 2586的更多相关文章

  1. How far away ? HDU - 2586 【LCA】【RMQ】【java】

    题目大意:求树上任意两点距离. 思路: dis[i]表示i到根的距离(手动选根),则u.v的距离=dis[u]+dis[v]-2*dis[lca(u,v)]. lca:u~v的dfs序列区间里,深度最 ...

  2. HDU - 2586 How far away ?(LCA模板题)

    HDU - 2586 How far away ? Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & ...

  3. hdu 2586 How far away ?倍增LCA

    hdu 2586 How far away ?倍增LCA 题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=2586 思路: 针对询问次数多的时候,采取倍增 ...

  4. LCA(最近公共祖先)--tarjan离线算法 hdu 2586

    HDU 2586 How far away ? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/ ...

  5. HDU 2586 How far away ?【LCA】

    任意门:http://acm.hdu.edu.cn/showproblem.php?pid=2586 How far away ? Time Limit: 2000/1000 MS (Java/Oth ...

  6. HDU 2586 How far away ? (LCA)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2586 LCA模版题. RMQ+LCA: #include <iostream> #incl ...

  7. hdu - 2586 How far away ?(最短路共同祖先问题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2586 最近公共祖先问题~~LAC离散算法 题目大意:一个村子里有n个房子,这n个房子用n-1条路连接起 ...

  8. HDU 2586 How far away ?(LCA在线算法实现)

    http://acm.hdu.edu.cn/showproblem.php?pid=2586 题意:给出一棵树,求出树上任意两点之间的距离. 思路: 这道题可以利用LCA来做,记录好每个点距离根结点的 ...

  9. HDU 2586.How far away ?-离线LCA(Tarjan)

    2586.How far away ? 这个题以前写过在线LCA(ST)的,HDU2586.How far away ?-在线LCA(ST) 现在贴一个离线Tarjan版的 代码: //A-HDU25 ...

随机推荐

  1. 引用KBC.PetroSIM.Interop的dll,在代码中调用时出现 80040154 没有注册类 的错误

    失败的尝试: regsvr32注册:模块已加载,但找不到入口点DllRegisterServer regasm注册:需写上regasm的完整路径,注册成功,但问题依旧 将项目的平台改为x86:问题依旧 ...

  2. IL中间语言指令大全

    一些 IL 语言指令解释: Public field Static     Beq     如果两个值相等,则将控制转移到目标指令.Public field Static     Beq_S     ...

  3. WPF ResourceDictionary 主题资源替换(一)

    当我们需要在程序中替换主题,更换另一套背景.颜色.样式时,如何在不修改资源Key值,直接替换呢? 问题&疑问 1. Key值冲突 同一ResourceDictionary中,不可以使用相同Ke ...

  4. InnoSetup 以命令行自动编译打包

    本章介绍,在新建Innosetup的编译脚本iss文件后,在不运行Innosetup软件的基础上,以bat自动编译运行打包. 一.添加Innosetup软件包 下载InnoSetup软件包并解压到bu ...

  5. 折腾Java设计模式之中介者模式

    博文原址:折腾Java设计模式之中介者模式 中介者模式 中介者模式(Mediator Pattern)是用来降低多个对象和类之间的通信复杂性.这种模式提供了一个中介类,该类通常处理不同类之间的通信,并 ...

  6. Spring MVC(二)基于标注的MVC

    1.基于标注的Spring MVC 1.1 建立一个项目导入jar包(ioc aop mvc) 拷贝容器对应的配置文件到src下 在WEB-INF建立一个login.jsp 1.2 在web.xml ...

  7. 解决Geoserver请求跨域的几种思路

    文章版权由作者李晓晖和博客园共有,若转载请于明显处标明出处:http://www.cnblogs.com/naaoveGIS/ 1.背景描述 跨域问题是浏览器同源安全制引起的特别常见的问题.不同前端语 ...

  8. OPPO K3在哪里打开USB调试模式的完美方法

    当我们使用pc链接安卓手机的时候,如果手机没有开启USB调试模式,pc则无法成功识别我们的手机,这个时候我们需要找解决方法将手机的USB调试模式打开,今天我们介绍OPPO K3如何开启USB调试模式的 ...

  9. Oracle 时间字段显示不正确,类型错误

    一.知识点 给Oracle的date类型字段设置默认值[设置为当前时间] to_date(to_char(sysdate,'yyyy-mm-dd hh24:mi:ss'),'yyyy-mm-dd hh ...

  10. Elasticsearch Kibana查询语法

    Elasticsearch Kibana查询语法 2018年06月03日 23:52:30 wangpei1949 阅读数:3992   Elasticsearch Kibana Discover的搜 ...