作为一个因为极度畏惧数学

而选择成为一名OIer的蒟蒻

终于还是迎来了要面对的这一天


一般题目中矩阵运算好像只用到矩阵乘法

(或许只是蒟蒻我做的题太少)

而且矩阵的乘法也是较难理解的一部分

所以就简单讲讲矩阵乘法

如图

矩阵A*B就是用A的每一行依次乘B的每一列

具体就是A的第i行中每一个数对应相乘B的第j列每个数

每个相乘所得结果相加

最后放置于C矩阵的第i行第j号位

所以矩阵乘法中A的列数必须等于B的行数

(虽然第一次看确实有些绕,但它用起来真的妙啊~妙啊~)

上一个矩阵A*B的代码

(这里以正方形矩阵为例)

for(ll i=1;i<=n;i++)//枚举A的每一行
for(ll j=1;j<=n;j++)//枚举B的每一列
for(ll k=1;k<=n;k++)//k既是A的列数,也是B的行数
C.a[i][j]+=A.a[i][k]*B.a[k][j];

这里运算的复杂度为O(n^3)

一般题目已经够用

有O(n^2.7)的算法太 太 太复杂

所以其实可以不用在意的啦

神奇的一点

矩阵乘法也是支持结合律的!!!

但是它不支持分配律

这是很重要的一点

因为这决定了他也同样可以快速幂

(你别告诉我不知道快速幂是什么 = = )

所以就先上一道最最基础的矩阵运算入门操作

题目传送门 啦~啦~啦~


题目描述

给定n*n的矩阵A,求A^k

输入输出格式

输入格式:

第一行,n,k

第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素

输出格式:

输出A^k

共n行,每行n个数,第i行第j个数表示矩阵第i行第j列的元素,每个元素模10^9+7

输入样例

2 1

1 1

1 1

输出样例

1 1

1 1

说明

n<=100, k<=10^12, |矩阵元素|<=1000


这次具体解释看代码注释啦~啦~啦~

(不要吐槽我的蜜汁缩进)

#include<iostream>
#include<cstdio>
#include<vector>
#include<queue>
#include<algorithm>
#include<cstring>
using namespace std;
typedef long long ll;

ll read()
{
    ll f=1,x=0;
    char ss=getchar();
    while(ss<'0'||ss>'9'){if(ss=='-')f=-1;ss=getchar();}
    while(ss>='0'&&ss<='9'){x=x*10+ss-'0';ss=getchar();}
    return x*f;
}

void print(int x)
{
    if(x<0){putchar('-');x=-x;}
    if(x>9) print(x/10);
    putchar(x%10+'0');
}

ll n,m;
ll ans;
const ll mod=1000000000+7;
struct node{ll a[110][110];}d;
//用结构体储存矩阵,以便调用快速幂后返回整个矩阵

node quick_pow(node f,ll k)
{
    if(k==1) return f;
    //若指数为1,则直接返回矩阵

    else if(k%2==1)
    {
        //指数为奇数,返回k-1次方乘一次方
        node temp=quick_pow(f,k-1);
        node ans;
        for(ll i=1;i<=n;i++)
        for(ll j=1;j<=n;j++)
        for(ll k=1;k<=n;k++)
        ans.a[i][j]+=(f.a[i][k]*temp.a[k][j])%mod,ans.a[i][j]%=mod;
        return ans;
    }

    else if(k%2==0)
    {
        //指数为偶数,计算矩阵的k/2次方,在返回平方
        node temp=quick_pow(f,k/2);
        node ans;
        for(ll i=1;i<=n;i++)
        for(ll j=1;j<=n;j++)
        for(ll k=1;k<=n;k++)
        ans.a[i][j]+=(temp.a[i][k]*temp.a[k][j])%mod,ans.a[i][j]%=mod;
        return ans;
    }
}

int main()
{
    n=read();m=read();
    for(ll i=1;i<=n;i++)
    for(ll j=1;j<=n;j++)
    d.a[i][j]=read();//读入初始矩阵

    node ans=quick_pow(d,m);//快速幂

    for(ll i=1;i<=n;i++)
    {
        for(ll j=1;j<=n;j++)
        print(ans.a[i][j]),printf(" ");
        printf("\n");
    }
    return 0;
}

洛谷P3390【模板】矩阵快速幂——矩阵运算入门笔记的更多相关文章

  1. 【洛谷P3390】矩阵快速幂

    矩阵快速幂 题目描述 矩阵乘法: A[n*m]*B[m*k]=C[n*k]; C[i][j]=sum(A[i][1~n]+B[1~n][j]) 为了便于赋值和定义,我们定义一个结构体储存矩阵: str ...

  2. 3990 [模板]矩阵快速幂 洛谷luogu

    题目背景 矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 输入输出格式 输入格式: 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素 输出格式: 输出A^k ...

  3. ACM-ICPC 2018 焦作赛区网络预赛- L:Poor God Water(BM模板/矩阵快速幂)

    God Water likes to eat meat, fish and chocolate very much, but unfortunately, the doctor tells him t ...

  4. 【洛谷 p3390】模板-矩阵快速幂(数论)

    题目:给定n*n的矩阵A,求A^k. 解法:利用矩阵乘法的定义和快速幂解答.注意用负数,但是数据太弱没有卡到我......(P.S.不要在 typedef long long  LL; 前使用 LL. ...

  5. 洛谷 P1965 转圈游戏 —— 快速幂

    题目:https://www.luogu.org/problemnew/show/P1965 居然真的就只是 ( x + m * 10k % n ) % n 代码如下: #include<ios ...

  6. POJ 3070 Fibonacci 矩阵快速幂模板

    Fibonacci Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 18607   Accepted: 12920 Descr ...

  7. 模板【洛谷P3390】 【模板】矩阵快速幂

    P3390 [模板]矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 矩阵A的大小为n×m,B的大小为n×k,设C=A×B 则\(C_{i,j}=\sum\limits_{k=1}^{n}A_{i, ...

  8. 【模板】矩阵快速幂 洛谷P2233 [HNOI2002]公交车路线

    P2233 [HNOI2002]公交车路线 题目背景 在长沙城新建的环城公路上一共有8个公交站,分别为A.B.C.D.E.F.G.H.公共汽车只能够在相邻的两个公交站之间运行,因此你从某一个公交站到另 ...

  9. 洛谷P1939【模板】矩阵加速(数列)+矩阵快速幂

    思路: 这个 a[1]=a[2]=a[3]=1 a[x]=a[x-3]+a[x-1] (x>3) 可以想成: [a(n) ] [1 0 1] [a(n-1)   ] [a(n-1) ] =    ...

随机推荐

  1. linux 下 tomcat 安装

    下载 根据已安装的jdk版本选择合适的版本,否则不兼容 https://tomcat.apache.org/whichversion.html 选择合适的压缩包 源码 二进制:已针对固定的操作系统和机 ...

  2. 为什么alertView弹出后button会消失的问题

    按option后会有提示:Do not use the label object to set the text color or the shadow color. Instead, use the ...

  3. TCP三次握手机制中的seq和ack

    TCP连接的三次握手:第一次(A--->B),SYN=1,seq=x第二次(B--->A),SYN=1,ACK=1,seq=y,ack=x+1 第三次(A--->B),ACK=1,s ...

  4. 未找到约束ContractName Microsoft.VisualStudio.Text.ITextDocumentFactoryServiceRequiredTypeIdentity匹配的导出的解决办法

    未找到约束ContractName Microsoft.VisualStudio.Text.ITextDocumentFactoryServiceRequiredTypeIdentity Micros ...

  5. jquery 导出Excel表格

    仅在 table 中应用过!适用于导出简单的excel <script type="text/javascript" src="jquery.table2excel ...

  6. python_如何统计序列中元素

    问题1: 随机数列[12,5,8,7,8,9,4,8,5,...] 中出现次数最高的3个元素,他们出现的次数 问题2: 对某英文文章的单词,进行词频统计,找出出现次数最搞得10个单词,他们出现的次数是 ...

  7. eclipse:Workspace in use or cannot be created

    打开eclipse出现:Workspace in use or cannot be created, choose a different one 原因:出现这种情况一般是workspace的配置文件 ...

  8. WebSphere--部署Servlet

    在WebSphere应用服务器上部署 Servlet需要四个步骤:编译 Servlet 或 Web 应用程序.将类文件放到 WebSphere应用服务器上.将相关的 HTML.JSP 和 SHTML ...

  9. 壮美大山包-2017中国大山包国际超百公里ITRA积分赛赛记

    2017年4月份用时28个多小时跑完江南100,付出的代价是双脚多达8个以上的水泡.所以接下来的4月29日的环汶川越野赛果断的从60公里换到了30公里组,慢悠悠的完成了. 虽然在赛道上一度想再也不参加 ...

  10. css中 padding属性的数值赋予顺序为

    4种可能的情况,举例说明:padding:10px; 四个内边距都是10pxpadding:5px 10px; 上下5px 左右10pxpadding:5px 10px 15px; 上5px 右10p ...