[LeetCode] Max Sum of Rectangle No Larger Than K 最大矩阵和不超过K
Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the matrix such that its sum is no larger than k.
Example:
Input: matrix = [[1,0,1],[0,-2,3]], k = 2
Output: 2
Explanation: Because the sum of rectangle[[0, 1], [-2, 3]]
is 2,
and 2 is the max number no larger than k (k = 2).
Note:
- The rectangle inside the matrix must have an area > 0.
- What if the number of rows is much larger than the number of columns?
Credits:
Special thanks to @fujiaozhu for adding this problem and creating all test cases.
这道题给了我们一个二维数组,让求和不超过的K的最大子矩形,那么首先可以考虑使用 brute force 来解,就是遍历所有的子矩形,然后计算其和跟K比较,找出不超过K的最大值即可。就算是暴力搜索,也可以使用优化的算法,比如建立累加和,参见之前那道题 Range Sum Query 2D - Immutable,可以快速求出任何一个区间和,下面的方法就是这样的,当遍历到 (i, j) 时,计算 sum(i, j),表示矩形 (0, 0) 到 (i, j) 的和,然后遍历这个矩形中所有的子矩形,计算其和跟K相比,这样既可遍历到原矩形的所有子矩形,参见代码如下:
解法一:
class Solution {
public:
int maxSumSubmatrix(vector<vector<int>>& matrix, int k) {
if (matrix.empty() || matrix[].empty()) return ;
int m = matrix.size(), n = matrix[].size(), res = INT_MIN;
int sum[m][n];
for (int i = ; i < m; ++i) {
for (int j = ; j < n; ++j) {
int t = matrix[i][j];
if (i > ) t += sum[i - ][j];
if (j > ) t += sum[i][j - ];
if (i > && j > ) t -= sum[i - ][j - ];
sum[i][j] = t;
for (int r = ; r <= i; ++r) {
for (int c = ; c <= j; ++c) {
int d = sum[i][j];
if (r > ) d -= sum[r - ][j];
if (c > ) d -= sum[i][c - ];
if (r > && c > ) d += sum[r - ][c - ];
if (d <= k) res = max(res, d);
}
}
}
}
return res;
}
};
下面这个算法进一步的优化了运行时间,这个算法是基于计算二维数组中最大子矩阵和的算法,可以参见 youtube 上的这个视频。这个算法巧妙在把二维数组按行或列拆成多个一维数组,然后利用一维数组的累加和来找符合要求的数字,这里用了 lower_bound 来加快的搜索速度,也可以使用二分搜索法来替代。建立一个 TreeSet,然后开始先放个0进去,为啥要放0呢,因为要找 lower_bound(curSum - k),当 curSum 和k相等时,0就可以被返回了,这样就能更新结果了。由于对于一维数组建立了累积和,那么 sum[i,j] = sum[i] - sum[j],其中 sums[i,j] 就是目标子数组需要其和小于等于k,然后 sums[j] 是 curSum,而 sum[i] 就是要找值,当使用二分搜索法找 sum[i] 时,sum[i] 的和需要大于等于 sum[j] - k,所以也可以使用 lower_bound 来找,参见代码如下:
解法二:
class Solution {
public:
int maxSumSubmatrix(vector<vector<int>>& matrix, int k) {
if (matrix.empty() || matrix[].empty()) return ;
int m = matrix.size(), n = matrix[].size(), res = INT_MIN;
for (int i = ; i < n; ++i) {
vector<int> sum(m);
for (int j = i; j < n; ++j) {
for (int k = ; k < m; ++k) {
sum[k] += matrix[k][j];
}
int curSum = ;
set<int> st{{}};
for (auto a : sum) {
curSum += a;
auto it = st.lower_bound(curSum - k);
if (it != st.end()) res = max(res, curSum - *it);
st.insert(curSum);
}
}
}
return res;
}
};
Github 同步地址:
https://github.com/grandyang/leetcode/issues/363
类似题目:
Range Sum Query 2D - Immutable
Maximum Size Subarray Sum Equals k
参考资料:
https://leetcode.com/problems/max-sum-of-rectangle-no-larger-than-k/
LeetCode All in One 题目讲解汇总(持续更新中...)
[LeetCode] Max Sum of Rectangle No Larger Than K 最大矩阵和不超过K的更多相关文章
- Leetcode: Max Sum of Rectangle No Larger Than K
Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the matrix s ...
- 363. Max Sum of Rectangle No Larger Than K
/* * 363. Max Sum of Rectangle No Larger Than K * 2016-7-15 by Mingyang */ public int maxSumSubmatri ...
- [LeetCode] 363. Max Sum of Rectangle No Larger Than K 最大矩阵和不超过K
Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the matrix s ...
- 【LeetCode】363. Max Sum of Rectangle No Larger Than K 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址: https://leetcode.com/problems/max-sum- ...
- 【leetcode】363. Max Sum of Rectangle No Larger Than K
题目描述: Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the ma ...
- 第十三周 Leetcode 363. Max Sum of Rectangle No Larger Than K(HARD)
Leetcode363 思路: 一种naive的算法就是枚举每个矩形块, 时间复杂度为O((mn)^2), 可以做少许优化时间复杂度可以降低到O(mnnlogm), 其中m为行数, n为列数. 先求出 ...
- [Swift]LeetCode363. 矩形区域不超过 K 的最大数值和 | Max Sum of Rectangle No Larger Than K
Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the matrix s ...
- 363 Max Sum of Rectangle No Larger Than K 最大矩阵和不超过K
Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the matrix s ...
- Max Sum of Rectangle No Larger Than K
Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the matrix s ...
随机推荐
- SpringMVC一路总结(三)
在博文<SpringMVC一路总结(一)>和<SpringMVC一路总结(二)>中,该框架的应用案例都是是基于xml的形式实现的.然而,对于大型项目而言,这种xml的配置会增加 ...
- SpingMVC 核心技术帮助文档
声明:本篇文档主要是用于参考帮助文档,没有实例,但几乎包含了SpringMVC 4.2版本的所有核心技术,当前最新版本是4.3,4.2的版本已经经是很新的了,所以非常值得大家一读,对于读完这篇文档感觉 ...
- TCP初始化序列号ISN
TCP初始化序列号ISN TCP初始化序列号不能设置为一个固定值,因为这样容易被攻击者猜出后续序列号,从而遭到攻击. RFC1948中提出了一个较好的初始化序列号ISN随机生成算法. ISN = M ...
- Bootstrap 4-alpha 初体验
What is Bootstrap? 第一句话就是废话了,作为新时代有理想有节操的开发人员无人不知无人不晓.可能就是熟悉程度因为各种原因不尽相同,有人只是知道他大概是个什么东西,有些人可能基本可以使用 ...
- 数百个 HTML5 例子学习 HT 图形组件 – 3D建模篇
http://www.hightopo.com/demo/pipeline/index.html <数百个 HTML5 例子学习 HT 图形组件 – WebGL 3D 篇>里提到 HT 很 ...
- Design Patterns Simplified - Part 3 (Simple Factory)【设计模式简述--第三部分(简单工厂)】
原文链接:http://www.c-sharpcorner.com/UploadFile/19b1bd/design-patterns-simplified-part3-factory/ Design ...
- .Net语言 APP开发平台——Smobiler学习日志:如何快速实现快递信息流的效果
最前面的话:Smobiler是一个在VS环境中使用.Net语言来开发APP的开发平台,也许比Xamarin更方便 样式一 一.目标样式 我们要实现上图中的效果,需要如下的操作: 1.从工具栏上的&qu ...
- 回车去替换铵钮的click点击功能
某一时候,我们不想在form的所有必填的域均完成之后,再去使用mouse去点击铵钮来提交数据.而是直接按回车去focus提交的铵钮来提交. 可以写jQuery script程序:
- 分享api接口验证模块
一.前言 权限验证在开发中是经常遇到的,通常也是封装好的模块,如果我们是使用者,通常指需要一个标记特性或者配置一下就可以完成,但实际里面还是有许多东西值得我们去探究.有时候我们也会用一些开源的权限验证 ...
- Java面试题整理一(侧重多线程并发)
1..是否可以在static环境中访问非static变量? 答:static变量在Java中是属于类的,它在所有的实例中的值是一样的.当类被Java虚拟机载入的时候,会对static变量进行初始化.如 ...