漫谈“采样”(sampling)
越学越懵了,计算机中是怎么进行采样的,用了这么久的 rand() 函数,到现在才知道是怎么做的。
从均匀分布中采样
计算机中通过线性同余发生器(linear congruential generator,LCG)很容易从一个 $ x \sim Uniform[0, 1)$ 的均匀分布中进行采样。如果要从 \(y \sim Uniform[a, b)\) 的均匀分布中采样,只需要 \(x\) 的基础上做个变换 \(y = (b-a)x + a\) 即可。
当然除了 LCG 外,还有其它均匀分布随机数生成方法,这里不一一列举,可以参考博客随机数生成(一):均匀分布。
单独把均匀分布采样摘出来是因为它很基础,很多其它采样方法都是在该基础上进行操作。
对离散型变量采样
我们现在通过某种方法(比如 LCG)可以生成均匀分布的随机数,这个时候我们就完全可以对某个含有有限个离散取值的变量 \(r\) 进行采样,方法就是采用轮盘赌选择法。
假设离散型变量 \(r\) 有 3 个取值,\(a_1, a_2, a_3\),概率分布如下图所示:
所有取值概率之和为 1。此时我们可以从 \(Uniform[0, 1)\) 生成一个随机数 \(b\),若 \(0 \le b < 0.6\),则选择出 \(a_1\);若 \(0.6 \le b < 0.7\),则选择出 \(a_2\);若 \(0.7 \le b < 1\),则选择出 \(a_3\)。
对连续型变量采样
上面我们已经讨论了从均匀分布 \(U[a,b)\) 中采样,对于其余分布,如高斯分布、gamma 分布、指数分布、t 分布、F 分布、Beta 分布、Dirichlet 分布等等,都可以基于 \(U[0,1)\) 的样本生成。例如高斯分布可以通过 Box-Muller 变换得到:
【Box-Muller 变换】如果随机变量 \(U_1,U_2\) 独立且 \(U_1,U_2 \sim Uniform[0, 1]\),
\[
\begin{aligned}
Z_0 = \sqrt{-2\ln U_1} \cos (2 \pi U_2) \\
Z_1 = \sqrt{-2\ln U_1} \sin (2 \pi U_2)
\end{aligned}
\]
则 \(Z_0, Z_1\) 独立且服从标准正态分布。
想要得到服从 \(Z_2 \sim N(\mu, \sigma^2)\) 的高斯分布,则只需对 \(Z_0 \sim N(0, 1)\) 做如下变换:
\[
Z_2 = \sigma Z_0 + \mu
\]
对于更加一般分布 \(p(x)\),如下图所示,我们该如何对其进行采样呢?
这个时候我们可以使用 rejection sampling。
Rejection sampling 首先寻找一个简单的分布 \(q(x)\),然后乘以一个常数 \(M\),使其满足 \(p(x) \le M \cdot q(x)\),如下图所示,\(q(x)\) 是一个高斯分布,\(M = 2\)。
在找到一个分布 \(2q(x)\) 能完全“覆盖”分布 \(p(x)\) 后,我们任意 sample 一个样本点 \(x_i\),但此时,我们将以 \(\frac{p(x_i)}{2q(x_i)}\) 的概率选择去接收这个样本,以 \((1 - \frac{p(x_i)}{2q(x_i)})\) 的概率选择去拒绝该样本。rejection sampling 平均会接收 \(\frac{1}{M}\) 个样本点。
rejection sampling 优点:使用 rejection sampling 可以对大多数分布进行采样,即使这些“分布”没有进行归一化。
rejection sampling 缺点:当 \(p(x)\) 和 \(2q(x)\) 相差太多时,rejection sampling 将拒绝大多数样本点;其次,对于高维数据,常数 \(M\) 会很大,简单使用 rejection sampling 所需要的样本量随空间维数增加而指数增长,即高维情况下不适合用 rejection sampling,此时 MCMC(Markov Chains Monte Carlo)和 Gibbs sampling 才是主流。(当然 MCMC 等既能处理离散情况也能处理连续情况。)
References
线性同余发生器 -- 百度百科
随机数生成(一):均匀分布 -- MoussaTintin
LDA-math-MCMC 和 Gibbs Sampling -- 靳志辉
MCMC(一)蒙特卡罗方法 -- 刘建平Pinard
Bayesian Methods for Machine Learning: Sampling from 1-d distributions
漫谈“采样”(sampling)的更多相关文章
- OProfile 性能分析工具
OProfile 性能分析工具 官方网站:http://oprofile.sourceforge.net/news/ oprofile.ko模块本文主要介绍Oprofile工具,适用系统的CPU性能分 ...
- 高级性能调试手段(oprofile+gprofile)+内核追踪手段:LTT
http://blog.csdn.net/wlsfling/article/details/5876134http://www.lenky.info/archives/2012/03/1371http ...
- 【接口时序】4、SPI总线的原理与Verilog实现
一. 软件平台与硬件平台 软件平台: 1.操作系统:Windows-8.1 2.开发套件:ISE14.7 3.仿真工具:ModelSim-10.4-SE 硬件平台: 1. FPGA型号:Xilinx公 ...
- 用OpenGL进行曲线、曲面的绘制
实验目的 理解Bezier曲线.曲面绘制的基本原理:理解OpenGL中一维.二维插值求值器的用法. 掌握OpenGL中曲线.曲面绘图的方法,对比不同参数下的绘图效果差异: 代码1:用四个控制点绘制一条 ...
- openGL 纹理05
纹理(Texture) 为了能够把纹理映射(Map)到三角形上,我们需要指定三角形的每个顶点各自对应纹理的哪个部分. 这样每个顶点就会关联着一个纹理坐标(Texture Coordinate) 用来标 ...
- Linux oprofile命令
一.简介 oProfile是Linux平台上的一个功能强大的性能分析工具,支持两种采样(sampling)方式:基于事件的采样(eventbased)和基于时间的采样(timebased),它可以工作 ...
- 预测学习、深度生成式模型、DcGAN、应用案例、相关paper
我对GAN"生成对抗网络"(Generative Adversarial Networks)的看法: 前几天在公开课听了新加坡国立大学[机器学习与视觉实验室]负责人冯佳时博士在[硬 ...
- words2
餐具:coffee pot 咖啡壶coffee cup 咖啡杯paper towel 纸巾napkin 餐巾table cloth 桌布tea -pot 茶壶tea set 茶具tea tray 茶盘 ...
- [NLP-ASR] 语音识别项目整理(一) 语音预处理
简介 之前参与过114对话系统的项目,中间搁置很久,现在把之前做过的内容整理一下,一是为自己回顾,二是也希望分享自己看的内容,中间也遇到一些问题,如果您可以提一些建议将不胜感激. 114查询主要分 ...
随机推荐
- GNSS相关网站汇总
转载: https://blog.csdn.net/zzh_my/article/details/78449972 一.bernese 数据表文件下载 ftp://nfs.kasi.re.kr rin ...
- Flask第三方工具组件介绍
flask-wtf组件flask-login组件flask-session组件flask-sqlalchemy组件flask-script组件flask-cache组件flask-assets组件fl ...
- 基于Python的数据分析(2):字符串编码
在上一篇文章<基于Python的数据分析(1):配置安装环境>中的第四个步骤中我们在python的启动步骤中强制要求加载sitecustomize.py文件并设置其默认编码为"u ...
- 利用Python进行数据分析——pandas入门
利用Python进行数据分析--pandas入门 基于NumPy建立的 from pandas importSeries,DataFrame,import pandas as pd 一.两种数据结构 ...
- JavaScript路线
看到知乎上有大神回答的,感觉很不错,分享下 首先要说明的是,咱现在不是高手,最多还是一个半桶水,算是入了JS的门. 谈不上经验,都是一些教训. 这个时候有人要说,“靠,你丫半桶水,凭啥教我们”.您先别 ...
- UML语言中五大视图和九种图形纵览
UML语言纵览 视图 UML语言中的视图大致分为如下5种: 1.用例视图.用例视图强调从系统的外部参与者(主要是用户)的角度看到的或需要的系统功能. 2.逻辑视图.逻辑视图从系统的静态结构和动态行为角 ...
- 函数上下文this
一般来说谁调用上下文都指向谁,具体有以下几种情况: 1.函数用圆括号调用,函数的上下文是window 注意:所有的全局变量都是window的属性,而函数里边定义的变量谁的属性也不是. 2.函数作为对象 ...
- Python之命名空间、闭包、装饰器
一.命名空间 1. 命名空间 命名空间是一个字典,key是变量名(包括函数.模块.变量等),value是变量的值. 2. 命名空间的种类和查找顺序 - 局部命名空间:当前函数 - 全局命名空间:当前模 ...
- 双网卡+mitmproxy+iptables搭建SSL中间人(支持非HTTPS协议)
"想要解决一个问题,最根本方法的就是了解这一切是如何工作的,而不是玄学." --ASCII0X03 最近学习发现现在很多现成的安卓SSL中间人工具和教程都只针对HTTPS流量,比如 ...
- 网络-tcp
1.TCP:面向连接可靠的传输协议,全拼:Transmission Control Protocol 2.UDP:用户数据报协议 全拼:User Datagram protocol 不是面向连接的 ...