介绍:

在计算机科学中,AVL树是最先发明的自平衡二叉查找树。

在AVL树中任何节点的两个子树的高度最大差别为一,所以它也被称为高度平衡树。

查找、插入和删除在平均和最坏情况下都是O(log n)。增加和删除可能需要通过一次或多次树旋转来重新平衡这个树。AVL树得名于它的发明者 G.M. Adelson-Velsky 和 E.M. Landis,他们在 1962 年的论文 “An algorithm for the organization of information” 中发表了它。

特点:

AVL树本质上还是一棵二叉搜索树,它的特点是:

1.本身首先是一棵二叉搜索树。

2.带有平衡条件:每个结点的左右子树的高度之差的绝对值(平衡因子)最多为1。

也就是说,AVL树,本质上是带了平衡功能的二叉查找树(二叉排序树,二叉搜索树)。

节点数:

高度为 h 的 AVL 树,节点数 N 最多2^h − 1; 最少N(h)=N(h− 1) +N(h− 2) + 1。

最少节点数n 如以斐波那契数列可以用数学归纳法证明:

即:

N(0) = 0 (表示 AVL Tree 高度为0的节点总数)

N(1) = 1 (表示 AVL Tree 高度为1的节点总数)

N(2) = 2 (表示 AVL Tree 高度为2的节点总数)

N(h)=N(h− 1) +N(h− 2) + 1 (表示 AVL Tree 高度为h的节点总数)

节点的平衡因子是它的左子树的高度减去它的右子树的高度。带有平衡因子 1、0 或 -1 的节点被认为是平衡的。带有平衡因子 -2 或 2 的节点被认为是不平衡的,并需要重新平衡这个树。平衡因子可以直接存储在每个节点中,或从可能存储在节点中的子树高度计算出来。

操作:

假设由于在二叉排序树上插入结点而失去平衡的最小子树根结点的指针为a(即a是离插入点最近,且平衡因子绝对值超过1的祖先结点),

则失去平衡后进行进行的规律可归纳为下列四种情况:

单向右旋平衡处理LL:

由于在*a的左子树根结点的左子树上插入结点,*a的平衡因子由1增至2,致使以*a为根的子树失去平衡,则需进行一次右旋转操作;

单向左旋平衡处理RR:

由于在*a的右子树根结点的右子树上插入结点,*a的平衡因子由-1变为-2,致使以*a为根的子树失去平衡,则需进行一次左旋转操作;

双向旋转(先左后右)平衡处理LR:

由于在*a的左子树根结点的右子树上插入结点,*a的平衡因子由1增至2,致使以*a为根的子树失去平衡,则需进行两次旋转(先左旋后右旋)操作。

双向旋转(先右后左)平衡处理RL:

由于在*a的右子树根结点的左子树上插入结点,*a的平衡因子由-1变为-2,致使以*a为根的子树失去平衡,则需进行两次旋转(先右旋后左旋)操作。

图解二叉树的操作:

1.左旋

2.右旋:

avl的插入操作:(邪恶脸)

1.单方向:

以节点5为基准进行右旋:

总结:

对于这种一个方向的,只需要一次操作,这是孩子都在左边的情况,对于孩子都在右边的情况,(5,8,10),以5为基准,进行一次左旋

2.双方向:

不是一个方向,进行两次操作,先转化为1的情况,再次旋转 ,显示3为基准,左旋,5为基准右旋,先左后右边

总结:

对于这种不一个方向的情况,需要两次操作,先转化为1的情况,对称的情况是先右后左。

删除操作:

从AVL树中删除可以通过把要删除的节点向下旋转成一个叶子节点,接着直接剪除这个叶子节点来完成。因为在旋转成叶子节点期间最多有 log n个节点被旋转,而每次 AVL 旋转耗费恒定的时间,删除处理在整体上耗费 O(log n) 时间。

查找:

在AVL树中查找同在一般BST完全一样的进行,所以耗费 O(log n) 时间,因为AVL树总是保持平衡的。不需要特殊的准备,树的结构不会由于查询而改变。(这是与伸展树查找相对立的,它会因为查找而变更树结构。)

时间复杂度分析:

在树, 二叉树, 二叉搜索树中提到,一个有n个节点的二叉树,它的最小深度为log(n),最大深度为n。比如下面两个二叉树:

深度为n的二叉树

深度为log(n)的二叉树

分析:

二叉搜索树的深度越小,那么搜索所需要的运算时间越小。一个深度为log(n)的二叉搜索树,搜索算法的时间复杂度也是log(n)。然而,我们在二叉搜索树中已经实现的插入和删除操作并不能让保持log(n)的深度。如果我们按照8,7,6,5,4,3,2,1的顺序插入节点,那么就是一个深度为n的二叉树。那么,搜索算法的时间复杂度为n。

我的微信二维码如下,欢迎交流讨论

欢迎关注《IT面试题汇总》微信订阅号。每天推送经典面试题和面试心得技巧,都是干货!

微信订阅号二维码如下:

参考

http://baike.baidu.com/view/671745.htm

http://www.cnblogs.com/vamei/archive/2013/03/21/2964092.html

数据结构-自平衡二叉查找树(AVL)详解的更多相关文章

  1. 006-数据结构-树形结构-二叉树、二叉查找树、平衡二叉查找树-AVL树

    一.概述 树其实就是不包含回路的连通无向图.树其实是范畴更广的图的特例. 树是一种数据结构,它是由n(n>=1)个有限节点组成一个具有层次关系的集合. 1.1.树的特性: 每个结点有零个或多个子 ...

  2. 【查找结构3】平衡二叉查找树 [AVL]

    在上一个专题中,我们在谈论二叉查找树的效率的时候.不同结构的二叉查找树,查找效率有很大的不同(单支树结构的查找效率退化成了顺序查找).如何解决这个问题呢?关键在于如何最大限度的减小树的深度.正是基于这 ...

  3. 平衡二叉查找树 AVL 的实现

    不同结构的二叉查找树,查找效率有很大的不同(单支树结构的查找效率退化成了顺序查找).如何解决这个问题呢?关键在于如何最大限度的减小树的深度.正是基于这个想法,平衡二叉树出现了. 平衡二叉树的定义 (A ...

  4. (7)Java数据结构--集合map,set,list详解

    MAP,SET,LIST,等JAVA中集合解析(了解) - clam_clam的专栏 - CSDN博---有颜色, http://blog.csdn.net/clam_clam/article/det ...

  5. 面试题:什么叫平衡二叉查找树--AVL树

    查找.插入和删除在平均和最坏情况下都是O(log n) 增加和删除可能需要通过一次或多次树旋转来重新平衡这个树 节点的平衡因子是它的左子树的高度减去它的右子树的高度.带有平衡因子 1.0 或 -1 的 ...

  6. 数据结构31:树(Tree)详解

    复制广义表数据结构中的树 树是数据结构中比较重要也是比较难理解的一类存储结构.本章主要主要围绕二叉树,对树的存储以及遍历做详细的介绍,同时还会涉及到有关树的实际应用,例如构建哈弗曼编码等. 由于树存储 ...

  7. Python实现的数据结构与算法之队列详解

    本文实例讲述了Python实现的数据结构与算法之队列.分享给大家供大家参考.具体分析如下: 一.概述 队列(Queue)是一种先进先出(FIFO)的线性数据结构,插入操作在队尾(rear)进行,删除操 ...

  8. Python实现的数据结构与算法之快速排序详解

    一.概述 快速排序(quick sort)是一种分治排序算法.该算法首先 选取 一个划分元素(partition element,有时又称为pivot):接着重排列表将其 划分 为三个部分:left( ...

  9. Python实现的数据结构与算法之链表详解

    一.概述 链表(linked list)是一组数据项的集合,其中每个数据项都是一个节点的一部分,每个节点还包含指向下一个节点的链接.根据结构的不同,链表可以分为单向链表.单向循环链表.双向链表.双向循 ...

随机推荐

  1. Spring + Mybatis 集成原理分析

    由于我之前是写在wizNote上的,迁移过来比较浪费时间,所以,这里我直接贴个图片,PDF文件我上传到百度云盘了,需要的可直接下载. 地址:https://pan.baidu.com/s/12ZJmw ...

  2. JavaC命令不能被执行尴尬问题解决

    安装和配置环境变量都按着流程在,但在最后的检验时,发现Java   Java -version 都能运行,唯独Javac 报"不能识别命令"错误信息,下面列出我遇到一个尴尬问题 在 ...

  3. JavaScript 对象JavaScript 对象

    JavaScript 中的所有事物都是对象:字符串.数值.数组.函数... 此外,JavaScript 允许自定义对象. 所有事物都是对象 JavaScript 提供多个内建对象,比如 String. ...

  4. 巧用第三方快速开发Android App 热门第三方SDK及框架

    巧用第三方快速开发Android App 热门第三方SDK及框架 历经大半年的时间,终于是把这门课程给录制出来了,也就在今天,正式在慕课网上上线了 项目地址:巧用第三方快速开发Android App ...

  5. git 覆盖本地变化

    git fetch && git reset --hard origin/master

  6. WiFi文件上传框架SGWiFiUpload

    背景 在iOS端由于文件系统的封闭性,文件的上传变得十分麻烦,一个比较好的解决方案是通过局域网WiFi来传输文件并存储到沙盒中. 简介 SGWiFiUpload是一个基于CocoaHTTPServer ...

  7. Dynamics CRM2016 Web Api之根据时间查询数据

    我的博文里已经有多次提到CRM中的时间处理问题了,本篇继续探讨在web api的场景下时间字段如何处理,本篇只涉及查询,针对2016中新增的时间行为"用户当地时间"和"无 ...

  8. Activtiy完全解析(一、Activity的创建过程)

    转载请标明出处: http://blog.csdn.net/xmxkf/article/details/52452218 本文出自:[openXu的博客]   在Android开发过程中,我们几乎每天 ...

  9. gitlab操作指南

    概述 GitLab是利用 Ruby on Rails 一个开源的版本管理系统,实现一个自托管的Git项目仓库,可通过Web界面进行访问公开的或者私人项目.它拥有与Github类似的功能,能够浏览源代码 ...

  10. Spark技术内幕:Shuffle Pluggable框架详解,你怎么开发自己的Shuffle Service?

    首先介绍一下需要实现的接口.框架的类图如图所示(今天CSDN抽风,竟然上传不了图片.如果需要实现新的Shuffle机制,那么需要实现这些接口. 1.1.1  org.apache.spark.shuf ...