监督学习可以分为生成方法与判别方法,所学到的模型可以分为生成模型与判别模型。

生成模型

生成模型由数据学习联合概率分布\(P(X,Y)\),然后求出条件概率分布\(P(Y|X)\)作为预测的模型,即生成模型:

\[P(Y|X)=\frac{P(X,Y)}{P(X)}\]

这样的方法之所以称为生成方法,是因为模型表示了给定输入X产生输出Y的生成关系。典型的生成模型有:朴素贝叶斯法和隐马尔可夫模型

判别模型

判别方法由数据直接学习决策函数\(f(X)\)或者条件概率分布\(P(Y|X)\)作为预测的模型,即判别模型,判别方法关心的是对给定的输入X,应该预测什么样的输出Y,典型的判别模型包括:K近邻法、感知机、决策树、逻辑斯蒂回归模型、最大熵模型、SVM、CRF等等

区别

生成方法的特点

  • 生成方法可以还原出联合概率分布\(P(X,Y)\),而判别方法则不能;
  • 生成方法的学习收敛速度更快,即当样本容量增加的时候,学到的模型可以更快的收敛于真实模型;
  • 当存在隐变量时,仍可以用生成方法学习,此时判别方法就不能用。

判别方法的特点

  • 判别方法直接学习的是条件概率\(P(Y|X)\)或决策函数\(f(X)\),直接面对预测,往往学习的准确率更高;
  • 由于直接学习\(P(Y|X)\)或\(f(X)\),可以对数据进行各种程度上的抽象、定义特征并使用特征,因此可以简化学习问题。

上述内容摘自于李航老师的《统计学习方法》一书。

我的理解是,生成模型在学习过程中可以得到联合分布,但其最终学习的目标可以不是联合分布,可以与判别模型一样学习条件概率分布。联合分布虽然能提供更多的信息,但也需要更多的样本和更多的计算。因此,对于样本数量较少的问题,优先考虑判别模型。

生成模型(generative model)与判别模型(discriminative model)的区别的更多相关文章

  1. 生成模型(Generative)和判别模型(Discriminative)

    生成模型(Generative)和判别模型(Discriminative) 引言    最近看文章<A survey of appearance models in visual object ...

  2. 生成模型(Generative Model)和 判别模型(Discriminative Model)

    引入 监督学习的任务就是学习一个模型(或者得到一个目标函数),应用这一模型,对给定的输入预测相应的输出.这一模型的一般形式为一个决策函数Y=f(X),或者条件概率分布P(Y|X). 监督学习方法又可以 ...

  3. 生成模型(Generative Model)Vs 判别模型(Discriminative Model)

      概率图分为有向图(bayesian network)与无向图(markov random filed).在概率图上可以建立生成模型或判别模型.有向图多为生成模型,无向图多为判别模型. 判别模型(D ...

  4. 生成模型(Generative Model)与判别模型(Discriminative Model)

    摘要: 1.定义 2.常见算法 3.特性 4.优缺点 内容: 1.定义 1.1 生成模型: 在概率统计理论中, 生成模型是指能够随机生成观测数据的模型,尤其是在给定某些隐含参数的条件下.它给观测值和标 ...

  5. PRML读书会第四章 Linear Models for Classification(贝叶斯marginalization、Fisher线性判别、感知机、概率生成和判别模型、逻辑回归)

    主讲人 planktonli planktonli(1027753147) 19:52:28 现在我们就开始讲第四章,第四章的内容是关于 线性分类模型,主要内容有四点:1) Fisher准则的分类,以 ...

  6. 转Generative Model 与 Discriminative Model

    没有完全看懂,以后再看,特别是hmm,CRF那里,以及生成模型产生的数据是序列还是一个值,hmm应该是序列,和图像的关系是什么. [摘要]    - 生成模型(Generative Model) :无 ...

  7. Generative Model 与 Discriminative Model

      [摘要]    - 生成模型(Generative Model) :无穷样本==>概率密度模型 = 产生模型==>预测    - 判别模型(Discriminative Model): ...

  8. tflearn kears GAN官方demo代码——本质上GAN是先训练判别模型让你能够识别噪声,然后生成模型基于噪声生成数据,目标是让判别模型出错。GAN的过程就是训练这个生成模型参数!!!

    GAN:通过 将 样本 特征 化 以后, 告诉 模型 哪些 样本 是 黑 哪些 是 白, 模型 通过 训练 后, 理解 了 黑白 样本 的 区别, 再输入 测试 样本 时, 模型 就可以 根据 以往 ...

  9. 生成式模型(generative) vs 判别式模型(discriminative)

    Andrew Ng, On Discriminative vs. Generative classifiers: A comparison of logistic regression and nai ...

随机推荐

  1. Gym 100952C&&2015 HIAST Collegiate Programming Contest C. Palindrome Again !!【字符串,模拟】

    C. Palindrome Again !! time limit per test:1 second memory limit per test:64 megabytes input:standar ...

  2. HDU 1003 Max Sum【动态规划求最大子序列和详解 】

    Max Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

  3. c语言基础学习09_关于复合类型的复习

    =============================================================================struct A{ char array[10 ...

  4. [国嵌笔记][026][ARM伪指令]

    ARM机器码 1.汇编程序通过汇编器变成机器码,然后才能在ARM处理器上运行 2.ARM机器码是一个32位的数,被分成了多个段,每个段都有各自的含义 3.格式: cond:表示条件(4位) I:表示源 ...

  5. 虚拟主机,VPS,云主机之间的区别?

    虚拟主机即共享主机,是利用虚拟技术把一台完整的服务器分成若干个主机,拥有多个网站,共享这台服务器的硬件和带宽的资源.可以托管简单的静态和动态的网站,满足客户最基本的网络托管需求. VPS是将一台物理服 ...

  6. [field:softlinks/]逻辑过程

    在plus/download.php 在dededln\include\taglib\channel\softlinks.lib.php

  7. 【编程技巧】EXTJS中Ext.grid.GridPanel配置项autoExpandColumn的使用方法

    autoExpandColumn的作用是自动伸展,占满剩余区域.一般使用在列比较少,并且大多数列都比较窄,有一列比较宽的情况下,当然什么时候使用,还是得按照实际情况确定. 使用的时候主要有三点要注意的 ...

  8. 二叉搜索树的平衡--AVL树和树的旋转(图解)

    二叉搜索树只有保持平衡时其查找效率才会高. 要保持二叉搜索树的平衡不是一件易事.不过还是有一些非常经典的办法可以做到,其中最好的方法就是将二叉搜索树实现为AVL树. AVL树得名于它的发明者 G.M. ...

  9. python 之pulp 线性规划介绍及举例

    pulp http://pythonhosted.org/PuLP/main/basic_python_coding.html 供水问题 1问题 供水公司有三个水库分别为A,B,C向四个小区甲乙丙丁供 ...

  10. java里程碑之泛型--使用泛型

    现在重新整理下泛型,前面的整理好多的底层的东西理解不深.泛型很重要的,作为java的一个程碑式的改进,还是很有必要认真的理解下人家的JDK的良苦用心的. 1,什么是泛型?为什么要使用泛型? 一定要记住 ...