来自FallDream的博客,未经允许,请勿转载, 谢谢。


传送门

考虑直接维护一个堆,然后往里面丢链,并且取出k个堆顶就行了。

然后就需要分类讨论啥的,给你的三个点变成两条链,每次取出一条链之后选择权值最小的再劈成两条链丢进去。

卡空间  所以树剖,不选择倍增

复杂度O((n+k)logn)

#include<iostream>
#include<cstdio>
#include<queue>
#define MN 500000
#define N 524288
#define ll long long
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
struct data{int x,y;ll X;
friend bool operator <(const data&x,const data&y){return x.X>y.X;}
data operator + (ll y)
{
data c=*this;c.X+=y;
return c;
}
};
priority_queue<data> q;
int n,k,w[MN+],dep[MN+],head[MN+],cnt=,top[MN+],mx[MN+];
int s[MN+],p[MN+],fa[MN+],T[N*+],dfn[MN+],dn=;
struct edge{int to,next;}e[MN+];
inline void ins(int f,int t){e[++cnt]=(edge){t,head[f]};head[f]=cnt;}
vector<data>v[MN+];
int Merge(int x,int y){return w[x]>w[y]?y:x;}
int query(int l,int r)
{
int sum=;
for(l+=N-,r+=N+;l^r^;l>>=,r>>=)
{
if(~l&) sum=Merge(sum,T[l+]);
if( r&) sum=Merge(sum,T[r-]);
}
return sum;
}
inline int Up(int x,int k)
{
int z=dep[x]-k;
for(;dep[top[x]]>z;x=fa[top[x]]);
return p[dfn[top[x]]+z-dep[top[x]]];
}
int lca(int x,int y)
{
for(;top[x]!=top[y];x=fa[top[x]])
if(dep[top[x]]<dep[top[y]]) swap(x,y);
return dep[x]<dep[y]?x:y;
} pair<int,int> Query(int x,int y)
{
int res=;
for(;top[x]!=top[y];x=fa[top[x]])
{
if(dep[top[x]]<dep[top[y]]) swap(x,y);
res=Merge(res,s[x]);
}
if(dfn[x]>dfn[y]) swap(x,y);
res=Merge(res,query(dfn[x],dfn[y]));
return make_pair(x,res);
} data Insert(int x,int y,ll v)
{
// cout<<"Insert"<<x<<" "<<y<<" "<<v<<endl;
pair<int,int> z=Query(x,y);
// cout<<"CalcOK"<<z.first<<" "<<z.second<<endl;
return (data){x,y,w[z.second]}+v;
} void Solve(int x,int y,int z,int l,ll Add)
{
// cout<<"Solve"<<x<<" "<<y<<" "<<z<<" "<<l<<" "<<Add<<endl;
if(z==l)
{
if(x!=z) q.push(Insert(x,Up(x,dep[x]-dep[z]-),Add));
if(y!=z) q.push(Insert(y,Up(y,dep[y]-dep[z]-),Add));
return;
}
if(!(dep[x]>=dep[z]&&Up(x,dep[x]-dep[z])==z)) swap(x,y);
if(x!=z) q.push(Insert(x,Up(x,dep[x]-dep[z]-),Add));
q.push(Insert(fa[z],y,Add));
} void Dfs(int x,int tp)
{
top[x]=tp;p[dfn[x]=++dn]=x;
if(tp==x) s[x]=x; else s[x]=Merge(s[fa[x]],x);
if(mx[x]) Dfs(mx[x],tp);
for(int i=head[x];i;i=e[i].next)
if(e[i].to!=mx[x]) Dfs(e[i].to,e[i].to);
} void Pre(int x)
{
top[x]=;mx[x]=;
for(int i=head[x];i;i=e[i].next)
{
Pre(e[i].to);
top[x]+=top[e[i].to];
if(top[e[i].to]>top[mx[x]]) mx[x]=e[i].to;
}
} int main()
{
n=read();k=read();w[]=1e9;
for(int i=;i<=n;++i) w[i]=read(),q.push((data){i,i,w[i]});
for(int i=;i<=n;++i) ins(fa[i]=read(),i),dep[i]=dep[fa[i]]+;
Pre();Dfs(,);
for(int i=;i<=n;++i) T[i+N]=p[i];
for(int i=N;i;--i) T[i]=Merge(T[i<<],T[i<<|]);
for(int i=;i<=n;++i)
{
int x=read(),y=read(),z=read();
if(x==y&&y==z){v[i].push_back((data){x,x,w[x]});continue;}
if(x==y) swap(x,z);v[i].push_back(Insert(x,y,));
if(z==y||z==x) continue;
int l1=lca(x,z),l2=lca(y,z),L=lca(x,y);
if(dep[z]<dep[L]) v[i].push_back(Insert(fa[L],z,));
else if(z!=l1&&z!=l2)
{
if(dep[l1]<dep[l2]) swap(l1,l2);
int Z=Up(z,dep[z]-dep[l1]-);
v[i].push_back(Insert(z,Z,));
}
}
for(int i=;i<=k;++i)
{
data x=q.top();q.pop();printf("%lld\n",x.X);int z=Query(x.x,x.y).second;
//printf("%d %d %d %d %lld\n",x.x,x.y,x.l,x.z,x.X);
Solve(x.x,x.y,z,lca(x.x,x.y),x.X-w[z]);
for(int j=;j<v[z].size();++j) q.push(v[z][j]+x.X);
}
return ;
}

[UOJ UR #4追击圣诞老人]的更多相关文章

  1. UOJ#53. 【UR #4】追击圣诞老人 树链剖分 k短路

    原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ53.html 题意 给定一棵有 n 个节点的树. 每一个点有一个权值. 对于每一个 $i$ 给定三个参数 ...

  2. [UOJ UR #2]树上GCD

    来自FallDream的博客,未经允许,请勿转载,谢谢. 传送门 看完题目,一般人都能想到 容斥稳了 .这样我们只要统计有多少点对满足gcd是i的倍数. 考虑长链剖分,每次合并的时候,假设我已经求出轻 ...

  3. [UOJ UR#16]破坏发射台

    来自FallDream的博客,未经允许,请勿转载,谢谢. 传送门 先考虑n是奇数的情况,很容易想到一个dp,f[i][0/1]表示转移到第i个数,第i个数是不是第一个数的方案数,然后用矩阵乘法优化一下 ...

  4. UOJ UR#9 App管理器

    题目传送门 题目大意大概就是给你一个混合图(既有有向边又有无向边),对于每条无向边,u-v,问删去u->v,或删去v->u那条可以使新图强连通.(保证数据有解). 这道题前几个数据点送分. ...

  5. 【UOJ#33】【UR#2】树上GCD 有根树点分治 + 容斥原理 + 分块

    #33. [UR #2]树上GCD 有一棵$n$个结点的有根树$T$.结点编号为$1…n$,其中根结点为$1$. 树上每条边的长度为$1$.我们用$d(x,y)$表示结点$x,y$在树上的距离,$LC ...

  6. uoj #118. 【UR #8】赴京赶考 水题

    #118. [UR #8]赴京赶考 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://uoj.ac/problem/118 Description ...

  7. uoj #31. 【UR #2】猪猪侠再战括号序列 贪心

    #31. [UR #2]猪猪侠再战括号序列 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://uoj.ac/problem/31 Descript ...

  8. UOJ 241. 【UR #16】破坏发射台 [矩阵乘法]

    UOJ 241. [UR #16]破坏发射台 题意:长度为 n 的环,每个点染色,有 m 种颜色,要求相邻相对不能同色,求方案数.(定义两个点相对为去掉这两个点后环能被分成相同大小的两段) 只想到一个 ...

  9. 【UOJ#51】【UR #4】元旦三侠的游戏(博弈论)

    [UOJ#51][UR #4]元旦三侠的游戏(博弈论) 题面 UOJ 题解 考虑暴力,\(sg[a][b]\)记录\(sg\)函数值,显然可以从\(sg[a+1][b]\)和\(sg[a][b+1]\ ...

随机推荐

  1. Vue.js学习

    <!DOCTYPE html> <html> <head> <title>xxx</title> </head> <bod ...

  2. eclipse下maven一些配置方法汇总

    随着eclipse的不同版本的变更:对maven插件的安装也有着不同的差异:之前也在一些版本的eclipse上安装成功地,但是最近又遇到了一些麻烦,故将这些方法记录下来: 大家都知道的最常用的一种方式 ...

  3. Python内置函数(17)——chr

    英文文档: chr(i) Return the string representing a character whose Unicode code point is the integer i. F ...

  4. api-gateway实践(15)API网关的待改进点 20171207

    一.API网关能力 API网关负责服务请求路由.组合及协议转换.客户端的所有请求都首先经过API网关,然后由它将请求路由到合适的微服务.API网关的客户端通过统一的网关接入微服务,在网关层处理所有的非 ...

  5. javascript学习(2)修改html元素和提示对话框

    一.修改html元素 1.修改p元素 1.1.源代码 1.2.执行前 1.3.执行后 2.修改div元素的className 2.1.源代码 1.2.执行前 1.3.执行后 3.直接在当前位置输出内容 ...

  6. 对JVM虚拟机中方法区的理解

    因为jdk8的jvm已经取消了方法区,所以这边先主要介绍jdk8以下版本中方法区相关内容. 1.虚拟机规范中方法区的概念: 原文链接:http://docs.oracle.com/javase/spe ...

  7. Windows10下的docker安装与入门 (三) 创建自己的docker镜像并且在容器中运行它

    Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的 Linux 机器上,也可以实现虚拟化.容器是完全使用沙箱机制,相互之间不会有任何 ...

  8. POJ-1860 Currency Exchange---Bellman-Ford判断正环

    题目链接: https://vjudge.net/problem/POJ-1860 题目大意: 我们的城市有几个货币兑换点.让我们假设每一个点都只能兑换专门的两种货币.可以有几个点,专门从事相同货币兑 ...

  9. join()的用法

    Python中有join()和os.path.join()两个函数,具体作用如下:    join():    连接字符串数组.将字符串.元组.列表中的元素以指定的字符(分隔符)连接生成一个新的字符串 ...

  10. Delphi X10.2 + FireDAC 使用 SQL 语句 INSERT

    // CREATE TABLE [tabusers]( // [id] INTEGER PRIMARY KEY AUTOINCREMENT, // [username] CHAR NOT NULL, ...