题目描述

约翰有 N 头奶牛,第 i 头奶牛的编号是 S i ,每头奶牛的编号都不同。这些奶牛最近在闹脾气,
为表达不满的情绪,她们在排队的时候一定要排成混乱的队伍。如果一只队伍里所有位置相邻的奶牛
的编号之差都大于 K,那么这就是一只混乱的队伍,其中 K 是一个给定的整数。比如说,当 K = 2
时,序列 (1,3,5,2,6,4) 就是一支混乱的队伍,而 (1,3,6,5,2,4) 不是,因为 6 和 5 只差 1,不够混
乱。请问,这 N 头奶牛可以排成多少种混乱的队形呢?

输入

• 第一行:两个整数 N 和 K,4 ≤ N ≤ 16, 1 ≤ K ≤ 3400
• 第二行到第 N + 1 行:第 i + 1 行有一个整数 S i ,1 ≤ S i ≤ 25000

输出

• 单个整数:表示混乱队伍的数量

样例输入

4 1 3 4 2 1

样例输出

2

提示

两种排法是 3,1,4,2 和 2,4,1,3

题解:

乱搞搞对的,不知对不对,看到n<=16 于是想到状压

F[i][j] 表示以i结尾,状态为j的方案数

然后就是如果满足 S[i]-S[k]>p 就F[i][j]+=F[k][j-(1<<(i-1))]

注意开long long

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=;
int a[N];long long F[N][<<N];
int main()
{
int n,p;
scanf("%d%d",&n,&p);
for(int i=;i<=n;i++)scanf("%d",&a[i]),F[i][(<<(i-))]=;
sort(a+,a+n+);
int m=(<<n)-;
for(int j=;j<=m;j++)
{
for(int i=;i<=n;i++)
{
if(!(j&(<<(i-))))continue;
for(int k=;k<=n;k++)
{
if(abs(a[i]-a[k])<=p)continue;
if(!(j&(<<(k-))))continue;
F[i][j]+=F[k][j-(<<(i-))];
}
}
}
long long ans=;
for(int i=;i<=n;i++)ans+=F[i][m];
printf("%lld",ans);
return ;
}

【USACO08NOV】奶牛混合起来Mixed Up Cows的更多相关文章

  1. 洛谷 P2915 [USACO08NOV]奶牛混合起来Mixed Up Cows 解题报告

    P2915 [USACO08NOV]奶牛混合起来Mixed Up Cows 题意: 给定一个长\(N\)的序列,求满足任意两个相邻元素之间的绝对值之差不超过\(K\)的这个序列的排列有多少个? 范围: ...

  2. 洛谷P2915 [USACO08NOV]奶牛混合起来Mixed Up Cows

    P2915 [USACO08NOV]奶牛混合起来Mixed Up Cows 题目描述 Each of Farmer John's N (4 <= N <= 16) cows has a u ...

  3. 洛谷 P2915 [USACO08NOV]奶牛混合起来Mixed Up Cows

    P2915 [USACO08NOV]奶牛混合起来Mixed Up Cows 题目描述 Each of Farmer John's N (4 <= N <= 16) cows has a u ...

  4. [USACO08NOV]奶牛混合起来Mixed Up Cows

    题目描述 Each of Farmer John's N (4 <= N <= 16) cows has a unique serial number S_i (1 <= S_i & ...

  5. luogu P2915 [USACO08NOV]奶牛混合起来Mixed Up Cows

    题目描述 Each of Farmer John's N (4 <= N <= 16) cows has a unique serial number S_i (1 <= S_i & ...

  6. [USACO08NOV]奶牛混合起来Mixed Up Cows(状态压缩DP)

    题目描述 Each of Farmer John's N (4 <= N <= 16) cows has a unique serial number S_i (1 <= S_i & ...

  7. 【题解】Luogu2915 [USACO08NOV]奶牛混合起来Mixed Up Cows

    题目描述 Each of Farmer John's N (4 <= N <= 16) cows has a unique serial number S_i (1 <= S_i & ...

  8. P2915 [USACO08NOV]奶牛混合起来Mixed Up Cows

    题目描述 约翰家有N头奶牛,第i头奶牛的编号是Si,每头奶牛的编号都是唯一的.这些奶牛最近 在闹脾气,为表达不满的情绪,她们在挤奶的时候一定要排成混乱的队伍.在一只混乱的队 伍中,相邻奶牛的编号之差均 ...

  9. 洛谷 P2915 【[USACO08NOV]奶牛混合起来Mixed Up Cows】

    类似于n皇后的思想,只要把dfs表示放置情况的数字压缩成一个整数,就能实现记忆化搜索了. 一些有关集合的操作: {i}在集合S内:S&(1<<i)==1: 将{i}加入集合S:S= ...

  10. 【[USACO08NOV]奶牛混合起来Mixed Up Cows】

    首先我们能够一眼看到4 <= N <= 16,那么就是它了,我们要压缩的状态就是它了 那么之后能我们用这个状态表示什么呢,我们要表示的显然是每只奶牛是否在队伍中 比如说10吧,转成二进制后 ...

随机推荐

  1. 【Alpha】咸鱼冲刺日记第一天-黄紫仪

    总汇链接 一,合照 emmmmm.自然是没有的. 二,项目燃尽图 emmmmm,事实上它还没有正式开始.所以依旧没有[突然觉得明天任务真重] 三,项目进展 emmmmm,我错了咸鱼了两天才突然反应过来 ...

  2. Beta阶段敏捷冲刺报告-DAY1

    Beta阶段敏捷冲刺报告-DAY1 Scrum Meeting 敏捷开发日期 2017.11.2 讨论时间 20:30 讨论地点 下课路上以及院楼侧门 参会人员 项目组全体成员 会议内容 附加功能讨论 ...

  3. Scapy实现SYN泛洪攻击

    一.实验说明 1.实验介绍 本次实验将使用python3版本的Scapy--Scapy3k来实现一个简单的DDos,本次实验分为两节,本节将学习如何使用Scapy3k来实现SYN泛洪攻击. 2.知识点 ...

  4. JAVA线程概念

    一.操作系统中线程和进程的概念 现在的操作系统是多任务操作系统.多线程是实现多任务的一种方式. 进程是指一个内存中运行的应用程序,每个进程都有自己独立的一块内存空间,一个进程中可以启动多个线程.比如在 ...

  5. bzoj千题计划217:bzoj2333: [SCOI2011]棘手的操作

    http://www.lydsy.com/JudgeOnline/problem.php?id=2333 读入所有数据,先模拟一遍所有的合并操作 我们不关心联通块长什么样,只关心联通块内有谁 所以可以 ...

  6. C++ 异常小记

    catch必定使用拷贝构造函数 如下代码编译不通过,因为拷贝构造被标记delete #include <stdexcept> #include <cstdlib> #inclu ...

  7. JavaScript查找数组中最大的值

    // 查找一个数组中最大的数 // 定义一个方法 searchMax function searchMax(arr) { // 声明一个变量MaxNumber假设为数组中最大的值arr[0]; var ...

  8. MHA 安装与简单使用

    MHA 在过去几年一直用的比较火,特别是在在传统复制的那个年代.至从有了GTID好像我们也可以把MHA给忘记了,但是很多企业现在还是在用的比较多.每个公司的MHA玩法也不太一样,但是本质都是差不多了. ...

  9. sts中maven

    建立一个maven web的工程 网上有很多关于maven的下载,配置等,我这里就不多说了. 下面介绍主要介绍关于在sts中建立一个maven时最开始出现的错误问题. 创建maven工程 file-& ...

  10. Spring知识点回顾(06)Profile 和 条件注解 @Conditional

    1.设定环境中的active profiles 如:DispatcherServerlet的init-param spring.profiles.active=production spring.pr ...