[BZOJ]1069 最大土地面积(SCOI2007)
计算几何经典题,贴板子。
Description
在某块平面土地上有N个点,你可以选择其中的任意四个点,将这片土地围起来,当然,你希望这四个点围成的多边形面积最大。
Input
第1行一个正整数N,接下来N行,每行2个数x,y,表示该点的横坐标和纵坐标。
Output
最大的多边形面积,答案精确到小数点后3位。
Sample Input
5
0 0
1 0
1 1
0 1
0.5 0.5
Sample Output
1.000
HINT
数据范围 n<=2000,|x|,|y|<=100000。
Solution
求N个点中最大四边形的面积,然而实际上这道题求的是凸四边形的面积,数据中似乎并没有三角形凸包这种东西。
我们回顾一下经典问题,在N个点中取出面积最大的三角形怎么做。
首先我们很容易得出,最大三角形的3个点肯定都在凸包上。
所以先求出N个点的凸包,然后用旋转卡壳来做:
设A1~AM为凸包上逆时针顺序排列的点。
枚举三角形底边一端点Ai,求出距离AiAi+1最远的凸包上的点Ak;
然后从Ai+1起枚举三角形底边另一端点Aj,根据Ak求出距离AiAj最远的凸包上的点Ak'。
因为j从i+1开始递增,所以k'也从k开始单调递增;
同理又因为i是单调递增,k也是随着i单调递增。
以上两行就是巧妙地利用旋转卡壳在O(n^2)的时间内解决了最大三角形的问题。
旋转卡壳实际上就是用在二次函数上的三分法求得最远点。
最大三角形可以做,最大四边形不是同样的思路吗?(想好了再往下看吧)
三角形是枚举底边,四边形枚举对角线就行啦。
在对角线两边各做一个旋转卡壳就行,其实就是相当于两边各找一个最大三角形。时间复杂度还是O(n^2)。
#include <cstdio>
#include <algorithm>
#include <cstring>
#define MN 2005
#define eps 1e-12
using namespace std;
struct vec
{
double x,y;
friend vec operator-(const vec& a,const vec& b) {return (vec){a.x-b.x,a.y-b.y};}
friend double operator/(const vec& a,const vec& b) {return a.x*b.y-a.y*b.x;}
friend double abs(const vec& a) {return a.x*a.x+a.y*a.y;}
}a[MN],q[MN<<];
int n,tp;
double ans; inline int read()
{
int n=,f=; char c=getchar();
while (c<'' || c>'') {if(c=='-')f=-; c=getchar();}
while (c>='' && c<='') {n=n*+c-''; c=getchar();}
return n*f;
} bool cmp1(const vec& A,const vec& B) {return A.y<B.y||A.y==B.y&&A.x<B.x;}
bool cmp2(const vec& A,const vec& B) {return (A-a[])/(B-a[])>=eps;}
inline bool check(const vec& A,const vec& B,const vec& C)
{
vec AB=B-A,AC=C-A;
if (AB/AC<) return true;
else if (AB/AC<eps&&abs(AB)<abs(AC)) return true;
return false;
} int main()
{
register int i,j,uj,luj,ldj;
scanf("%d",&n);
for (i=;i<=n;++i) scanf("%lf%lf",&a[i].x,&a[i].y);
sort(a+,a+n+,cmp1); sort(a+,a+n+,cmp2);
for (q[tp=]=a[],i=;i<=n;q[++tp]=a[i++])
for (;tp>&&check(q[tp-],q[tp],a[i]);--tp);
for (i=;i<=tp;++i) q[tp+i]=q[i];
for (i=,uj=;i<=tp;++i)
{
for (;(q[i+]-q[i])/(q[uj+]-q[i])>(q[i+]-q[i])/(q[uj]-q[i]);++uj);
for (j=i+,ldj=i+,luj=uj;j<=i+tp-;++j)
{
for (;(q[j]-q[i])/(q[luj+]-q[i])>(q[j]-q[i])/(q[luj]-q[i]);++luj);
for (;(q[ldj+]-q[i])/(q[j]-q[i])>(q[ldj]-q[i])/(q[j]-q[i]);++ldj);
ans=max(ans,((q[j]-q[i])/(q[luj]-q[i])+(q[ldj]-q[i])/(q[j]-q[i]))/);
}
}
printf("%.3lf",ans);
}
Last Word
所以最大五边形也是可以做的咯?
[BZOJ]1069 最大土地面积(SCOI2007)的更多相关文章
- BZOJ 1069 最大土地面积
Description 在某块平面土地上有N个点,你可以选择其中的任意四个点,将这片土地围起来,当然,你希望这四个点围成的多边形面积最大. Input 第1行一个正整数N,接下来N行,每行2个数x,y ...
- 【BZOJ】【1069】【SCOI2007】最大土地面积
计算几何/旋转卡壳 从已知点中选出四个使得选出的四边形面积最大,很明显我们应该在凸包上搞. 我一开始的思路是:枚举 i ,找到 i 的对锺点cur1,这两个点将凸包分成了两半,我们在左半中枚举一个 j ...
- bzoj 1069 [SCOI2007]最大土地面积(旋转卡壳)
1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 2277 Solved: 853[Submit][Stat ...
- BZOJ 1069: [SCOI2007]最大土地面积 [旋转卡壳]
1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 2978 Solved: 1173[Submit][Sta ...
- BZOJ 1069: [SCOI2007]最大土地面积(旋转卡壳)
题目链接~ 1069: [SCOI2007]最大土地面积 思路很简单,极角排序求完凸包后,在凸包上枚举对角线,然后两边分别来两个点旋转卡壳一下,搞定! 不过计算几何的题目就是这样,程序中间的处理还是比 ...
- ●BZOJ 1069 [SCOI2007]最大土地面积
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1069 题解: 计算几何,凸包,旋转卡壳 其实和这个题差不多,POJ 2079 Triangl ...
- bzoj 1069 [SCOI2007]最大土地面积——旋转卡壳
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1069 发现 n 可以 n^2 .所以枚举对角线,分开的两部分三角形就可以旋转卡壳了. 注意坐 ...
- [BZOJ]1069: [SCOI2007]最大土地面积
题目大意:给出二维平面上n个点,求最大的由这些点组成的四边形面积.(n<=2000) 思路:求出凸包后旋转卡壳枚举对踵点对作为四边形的对角线,枚举或二分另外两个点,复杂度O(n^2)或O(nlo ...
- bzoj 1069: [SCOI2007]最大土地面积 凸包+旋转卡壳
题目大意: 二维平面有N个点,选择其中的任意四个点使这四个点围成的多边形面积最大 题解: 很容易发现这四个点一定在凸包上 所以我们枚举一条边再旋转卡壳确定另外的两个点即可 旋(xuan2)转(zhua ...
随机推荐
- Flask 学习 十三 应用编程接口
最近这些年,REST已经成为web services和APIs的标准架构,很多APP的架构基本上是使用RESTful的形式了. REST的六个特性: 客户端-服务器(Client-Server)服务器 ...
- 一句话了解JAVA与大数据之间的关系
大数据无疑是目前IT领域的最受关注的热词之一.几乎凡事都要挂上点大数据,否则就显得你OUT了.如果再找一个可以跟大数据并驾齐驱的IT热词,JAVA无疑是跟大数据并驾齐驱的一个词语.很多人在提到大数据的 ...
- Apache自带 ab压测工具 Windows配置使用说明 - 随笔记录
我们先来了解一下ab工具的概念,摘自网络: ab是apache自带的压力测试工具.ab非常实用,它不仅可以对apache服务器进行网站访问压力测试,也可以对或其它类型的服务器进行压力测试.比如ngin ...
- java截取一个字符串正数或倒数某个特定字符前后的内容
取出正数第二个“.”后面的内容 public class TestCode { public static void main(String[] args) { String str ="2 ...
- Linq 对象的比较 Contains,Max
IList<Student> studentList = new List<Student>() { new Student() { StudentID = 1, Studen ...
- Mysql数据库主从配置
一.为什么要使用数据库主从架构 一个网站损耗资源最厉害的就是数据库,最易崩溃的也是数据库,而数据库崩溃带来的后果是非常严重的.数据库分为读和写操作,在实际的应用中,读操作的损耗远比写操作多太多,因此读 ...
- OpenID Connect + OAuth2.0
一.问题的提出 现代应用程序或多或少都是如下这样的架构: 在这种情况下,前端.中间层和后端都需要进行验证和授权来保护资源,所以不能仅仅在业务逻辑层或者服务接口层来实现基础的安全功能.为了解决这样的问题 ...
- 译《Time, Clocks, and the Ordering of Events in a Distributed System》
Motivation <Time, Clocks, and the Ordering of Events in a Distributed System>大概是在分布式领域被引用的最多的一 ...
- 高级控件 popwindow 与gridview的组合应用
Gridview 的布局设置 <GridView android:layout_width="wrap_content" android:layout_height=&quo ...
- Python django实现简单的邮件系统发送邮件功能
Python django实现简单的邮件系统发送邮件功能 本文实例讲述了Python django实现简单的邮件系统发送邮件功能. django邮件系统 Django发送邮件官方中文文档 总结如下: ...