【BZOJ4007】[JLOI2015]战争调度(动态规划)
【BZOJ4007】[JLOI2015]战争调度(动态规划)
题面
题解
神仙题,我是做不来。
一个想法是设\(f[i][j]\)表示当前考虑到\(i\)节点,其子树内有\(j\)个人选择了打仗的最大贡献。
但是我们发现直接做我们并不会转移,因为我们不知道每个儿子的选择情况。
那么我们直接爆搜这条链上的每个点的情况,这样子到了叶子节点就可以直接转移上去。
而这样子爆搜的条件下,显然一个点的左右两个儿子是独立的,即转移是互不影响的,所以这样子并没有问题。
那么复杂度是什么呢?
我们理解为每个叶子节点都要对应的爆搜一次所有父亲的答案,这样子复杂度就是\(O(2^{2n})\),然后对于每一个点考虑,然后对于每一种爆搜情况,还要\(O(n)\)的转移。
所以复杂度就是\(O(2^{2n}n)\)。
#include<iostream>
#include<cstdio>
using namespace std;
#define MAX 1100
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int w1[MAX][MAX],w2[MAX][MAX];
int n,m,f[MAX][MAX],ans;
bool vis[MAX];
void dfs(int u,int d)
{
for(int i=0;i<=(1<<d);++i)f[u][i]=0;
if(!d)
{
for(int i=1;i<=n;++i)
if(vis[i])f[u][1]+=w1[u][i];
else f[u][0]+=w2[u][i];
return;
}
vis[d]=false;dfs(u<<1,d-1);dfs(u<<1|1,d-1);
for(int i=0;i<=(1<<(d-1));++i)
for(int j=0;j<=(1<<(d-1));++j)
f[u][i+j]=max(f[u][i+j],f[u<<1][i]+f[u<<1|1][j]);
vis[d]=true;dfs(u<<1,d-1);dfs(u<<1|1,d-1);
for(int i=0;i<=(1<<(d-1));++i)
for(int j=0;j<=(1<<(d-1));++j)
f[u][i+j]=max(f[u][i+j],f[u<<1][i]+f[u<<1|1][j]);
}
int main()
{
n=read();m=read();
for(int i=0;i<(1<<(n-1));++i)
for(int j=1;j<n;++j)w1[i+(1<<(n-1))][j]=read();
for(int i=0;i<(1<<(n-1));++i)
for(int j=1;j<n;++j)w2[i+(1<<(n-1))][j]=read();
dfs(1,n-1);
for(int i=0;i<=m;++i)ans=max(ans,f[1][i]);
printf("%d\n",ans);
return 0;
}
【BZOJ4007】[JLOI2015]战争调度(动态规划)的更多相关文章
- [BZOJ4007][JLOI2015]战争调度(DP+主定理)
第一眼DP,发现不可做,第二眼就只能$O(2^{1024})$暴搜了. 重新审视一下这个DP,f[x][i]表示在x的祖先已经全部染色之后,x的子树中共有i个参战平民的最大贡献. 设k为总结点数,对于 ...
- BZOJ4007 [JLOI2015]战争调度
根本想不出来... 原来还是暴力出奇迹啊QAQ 无限ymymym中 /************************************************************** Pr ...
- [JLOI2015]战争调度
[JLOI2015]战争调度 题目 解题报告 考试打了个枚举的暴力,骗了20= = $qsy$大佬的$DP$: 其实就是枚举= =,只不过枚举的比较强= = #include<iostream& ...
- 【bzoj4007】[JLOI2015]战争调度 暴力+树形背包dp
题目描述 给你一棵 $n$ 层的完全二叉树,每个节点可以染黑白两种颜色.对于每个叶子节点及其某个祖先节点,如果它们均为黑色则有一个贡献值,如果均为白色则有另一个贡献值.要求黑色的叶子节点数目不超过 $ ...
- 【bzoj4007】[JLOI2015]战争调度 暴力+树形dp
Description 脸哥最近来到了一个神奇的王国,王国里的公民每个公民有两个下属或者没有下属,这种 关系刚好组成一个 n 层的完全二叉树.公民 i 的下属是 2 * i 和 2 * i +1.最下 ...
- bzoj4007 & loj2111 [JLOI2015]战争调度 复杂度分析+树上背包
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4007 https://loj.ac/problem/2111 题解 同 [NOI2006]网络 ...
- [JLOI2015]战争调度【暴力+树形Dp】
Online Judge:Bzoj4007,Luogu P3262 Label:暴力,树形Dp 题解 参考了这篇blog https://www.cnblogs.com/GXZlegend/p/830 ...
- 【题解】JLOI2015战争调度
搜索+状压+DP. 注意到一个性质:考虑一棵以x为根的子树,在x到原树的根的路径上的点如果都已经确定了方案,那么x的左右儿子的决策就彼此独立,互不影响了.所以我们考虑状压一条路径上每一层节点的状态,求 ...
- 【BZOJ 4007】[JLOI2015]战争调度 DP+搜索+状压
又是一道思路清新的小清晰. 观察题目,如果我们确定了平民或者贵族的任意一方,我们便可以贪心的求出另一方,至此20分:我们发现层数十分小,那么我们就也是状压层数,用lca转移,线性dp,至此50分(好像 ...
随机推荐
- 简简单单的Vue3(插件开发,路由系统,状态管理)
既然选择了远方,便只顾风雨兼程 __ HANS许 系列:零基础搭建前后端分离项目 系列:零基础搭建前后端分离项目 插件 路由(vue-router) 状态管理模式(Vuex) 那在上篇文章,我们讲了, ...
- centos安装jenkins
1.安装jdk yum install java java -version 2.安装jenkins 添加Jenkins库到yum库,Jenkins将从这里下载安装. wget -O /etc/yum ...
- Java 原始模型(Prototype)模式
一.什么是原型模式: 通过给出一个原型对象指明所要创建的对象的类型,然后通过复制这个原型对象来获取的更多的同类型的对象. 在Java语言中,支持原型模式,所有的对象都继承自Object对象,Objec ...
- 2018-07-10 为Chrome和火狐浏览器编写扩展
由于扩展标准的逐渐一致, 现在同一扩展代码库已经有可能同时用于Chrome和火狐. 下面是一个简单的工具栏按钮和弹窗(尚无任何实际功能): 代码库地址: nobodxbodon/suan1 所有代码: ...
- 第十三课 CSS外观及样式的应用 css学习3
一.1.color: 文本颜色 预定义文本颜色值,如red,blue等 十六进制的颜色值 #fff白色 建议常用的表示方法 RGB代码,如红色可以表示为rgb(255,0,0)或rgb(100%,%0 ...
- js高德地图手机定位
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> <html> <hea ...
- arcgis api 3.x for js 入门开发系列十五台风轨迹
前言 关于本篇功能实现用到的 api 涉及类看不懂的,请参照 esri 官网的 arcgis api 3.x for js:esri 官网 api,里面详细的介绍 arcgis api 3.x 各个类 ...
- vs code配置flutter开发android
下载flutter_sdk压缩包,解压到指定目录,把sdk的bin目录添加到系统环境变量Path 设置中国临时镜像:添加两个系统变量 FLUTTER_STORAGE_BASE_URL=https:// ...
- JDBC实现简单增删改查
JDBC全称为:Java Data Base Connectivity (java数据库连接),主要用于java与数据库的链接. 整个链接过程如下图: 1.数据库驱动:Driver 加载mysql驱动 ...
- $.each()、$.map()区别浅谈
遍历应该是各种语言中常会用到的操作了,实现的方法也很多,例如使用for.while等循环语句就可以很轻松的做到对数组或对象的遍历,今天想讲的不是它们,而是简单方便的遍历方法. 大致的整理了一下,经常用 ...