【BZOJ4007】[JLOI2015]战争调度(动态规划)
【BZOJ4007】[JLOI2015]战争调度(动态规划)
题面
题解
神仙题,我是做不来。
一个想法是设\(f[i][j]\)表示当前考虑到\(i\)节点,其子树内有\(j\)个人选择了打仗的最大贡献。
但是我们发现直接做我们并不会转移,因为我们不知道每个儿子的选择情况。
那么我们直接爆搜这条链上的每个点的情况,这样子到了叶子节点就可以直接转移上去。
而这样子爆搜的条件下,显然一个点的左右两个儿子是独立的,即转移是互不影响的,所以这样子并没有问题。
那么复杂度是什么呢?
我们理解为每个叶子节点都要对应的爆搜一次所有父亲的答案,这样子复杂度就是\(O(2^{2n})\),然后对于每一个点考虑,然后对于每一种爆搜情况,还要\(O(n)\)的转移。
所以复杂度就是\(O(2^{2n}n)\)。
#include<iostream>
#include<cstdio>
using namespace std;
#define MAX 1100
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int w1[MAX][MAX],w2[MAX][MAX];
int n,m,f[MAX][MAX],ans;
bool vis[MAX];
void dfs(int u,int d)
{
for(int i=0;i<=(1<<d);++i)f[u][i]=0;
if(!d)
{
for(int i=1;i<=n;++i)
if(vis[i])f[u][1]+=w1[u][i];
else f[u][0]+=w2[u][i];
return;
}
vis[d]=false;dfs(u<<1,d-1);dfs(u<<1|1,d-1);
for(int i=0;i<=(1<<(d-1));++i)
for(int j=0;j<=(1<<(d-1));++j)
f[u][i+j]=max(f[u][i+j],f[u<<1][i]+f[u<<1|1][j]);
vis[d]=true;dfs(u<<1,d-1);dfs(u<<1|1,d-1);
for(int i=0;i<=(1<<(d-1));++i)
for(int j=0;j<=(1<<(d-1));++j)
f[u][i+j]=max(f[u][i+j],f[u<<1][i]+f[u<<1|1][j]);
}
int main()
{
n=read();m=read();
for(int i=0;i<(1<<(n-1));++i)
for(int j=1;j<n;++j)w1[i+(1<<(n-1))][j]=read();
for(int i=0;i<(1<<(n-1));++i)
for(int j=1;j<n;++j)w2[i+(1<<(n-1))][j]=read();
dfs(1,n-1);
for(int i=0;i<=m;++i)ans=max(ans,f[1][i]);
printf("%d\n",ans);
return 0;
}
【BZOJ4007】[JLOI2015]战争调度(动态规划)的更多相关文章
- [BZOJ4007][JLOI2015]战争调度(DP+主定理)
第一眼DP,发现不可做,第二眼就只能$O(2^{1024})$暴搜了. 重新审视一下这个DP,f[x][i]表示在x的祖先已经全部染色之后,x的子树中共有i个参战平民的最大贡献. 设k为总结点数,对于 ...
- BZOJ4007 [JLOI2015]战争调度
根本想不出来... 原来还是暴力出奇迹啊QAQ 无限ymymym中 /************************************************************** Pr ...
- [JLOI2015]战争调度
[JLOI2015]战争调度 题目 解题报告 考试打了个枚举的暴力,骗了20= = $qsy$大佬的$DP$: 其实就是枚举= =,只不过枚举的比较强= = #include<iostream& ...
- 【bzoj4007】[JLOI2015]战争调度 暴力+树形背包dp
题目描述 给你一棵 $n$ 层的完全二叉树,每个节点可以染黑白两种颜色.对于每个叶子节点及其某个祖先节点,如果它们均为黑色则有一个贡献值,如果均为白色则有另一个贡献值.要求黑色的叶子节点数目不超过 $ ...
- 【bzoj4007】[JLOI2015]战争调度 暴力+树形dp
Description 脸哥最近来到了一个神奇的王国,王国里的公民每个公民有两个下属或者没有下属,这种 关系刚好组成一个 n 层的完全二叉树.公民 i 的下属是 2 * i 和 2 * i +1.最下 ...
- bzoj4007 & loj2111 [JLOI2015]战争调度 复杂度分析+树上背包
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4007 https://loj.ac/problem/2111 题解 同 [NOI2006]网络 ...
- [JLOI2015]战争调度【暴力+树形Dp】
Online Judge:Bzoj4007,Luogu P3262 Label:暴力,树形Dp 题解 参考了这篇blog https://www.cnblogs.com/GXZlegend/p/830 ...
- 【题解】JLOI2015战争调度
搜索+状压+DP. 注意到一个性质:考虑一棵以x为根的子树,在x到原树的根的路径上的点如果都已经确定了方案,那么x的左右儿子的决策就彼此独立,互不影响了.所以我们考虑状压一条路径上每一层节点的状态,求 ...
- 【BZOJ 4007】[JLOI2015]战争调度 DP+搜索+状压
又是一道思路清新的小清晰. 观察题目,如果我们确定了平民或者贵族的任意一方,我们便可以贪心的求出另一方,至此20分:我们发现层数十分小,那么我们就也是状压层数,用lca转移,线性dp,至此50分(好像 ...
随机推荐
- CMD命令讲解(一)SC
参考网站:https://technet.microsoft.com/en-us/library/bb490995.aspx 备注:网站内容是翻译得来,源网站在上面 SC 与服务控制器和已安装的服务进 ...
- MySQL 笔记整理(18) --为什么这些SQL语句逻辑相同,性能却差异巨大?
笔记记录自林晓斌(丁奇)老师的<MySQL实战45讲> (本篇内图片均来自丁奇老师的讲解,如有侵权,请联系我删除) 18) --为什么这些SQL语句逻辑相同,性能却差异巨大? 本篇我们以三 ...
- ASP.net<a>标签跨页面传参数
//在goodsDetail.aspx页面接收 <script> //加载事件 $(function () { //第一种方式 var id=GetQueryString("id ...
- js + 加号 报错,IIS 配置
一.问题描述: 1开发环境完全没有问题: 2 build 后生成的js脚本,带有+号. 程序发布到IIS后,带加+号js脚本报错. 二.解决方案 1 修改build规则,让它不产生特殊符号. 能力有 ...
- GraphQL基础篇
最近参与了一个大型项目,大型项目随着系统业务量的增大,不同的应用和系统共同使用着许多的服务接口API,而随着业务的变化和发展,不同的应用对相同资源的不同使用方法最终会导致需要维护的服务API数量呈现爆 ...
- Ubunttu16.04升级/更新git版本(亲测有效)
sudo add-apt-repository ppa:git-core/ppa sudo apt-get update sudo apt-get install git 升级前: 升级后:
- http协议、模块、express框架以及路由器、中间件和mysql模块
一.http协议 是浏览器和web服务器之间的通信协议 1.通用头信息 request url:请求的url,向服务器请求的数据 request method:请求的方式 get.post sta ...
- EclipseAndroid打包签名发布安装失败闪退运行不了
EclipseAndroid打包签名发布安装失败闪退运行不了 本来没怎么用过用Eclipse写安卓,可是有人有需要必须用Eclipse写,那就写呗. 可在签名打包的时候,发到手机上安装,提示安装成功. ...
- [20190423]简单测试latch nowilling等待模式.txt
[20190423]简单测试latch nowilling等待模式.txt --//我对这个问题的理解就是如果参数willing=0,表示无法获取该latch,直接退出,再寻找类似的latch.--/ ...
- Serial Splitter 4.2 串口拆分说明
使用方法 有些设备和程序只能使用COM端口.如果计算机没有COM端口,或者已经被其他应用程序占用,则需要创建虚拟串行端口.在串行分配器中,我们使用虚拟串行端口驱动程序技术,它可以在系统中创建任意数量的 ...