读论文系列:Object Detection CVPR2016 YOLO
CVPR2016: You Only Look Once:Unified, Real-Time Object Detection
转载请注明作者:梦里茶
YOLO,You Only Look Once,摒弃了RCNN系列方法中的region proposal步骤,将detection问题转为一个回归问题
网络结构
输入图片:resize到448x448
整张图片输入卷积神经网络(24层卷积+2层全连接,下面这张示意图是Fast YOLO的)
- 将图片划分为SxS个格子,S=7
- 输出一个SxS大小的class probability map,为图片上每个格子所属的分类
- 输出为每个格子输出B个bounding box,每个bounding box由x,y,w,h表示,为每个bounding box输出一个confidence,即属于前景的置信度
于是输出可以表示为一个SxSx(B*(4+1)+C)的tensor,训练只需要根据数据集准备好这样的tensor进行regression就行
- 对所有bounding box按照confidence做非极大抑制,得到检测结果
训练
Loss
- 前两行为定位loss,λcoord为定位loss的权重,论文中取5
- 第三行为一个bounding box属于前景时的置信度回归loss,
- 当格子中有对象出现时,真实Ci为1,
- 1ijobj是一个条件表达式,当bounding box“负责(is responsible for)”图中一个真实对象时为1,否则为0,
- 所谓“负责”,指的是在当前这个格子的所有bounding box中,这个bounding box与真实的bounding box重叠率最大
- 第四行为一个bounding box属于背景时的置信度回归loss,
- 为了避免负样本过多导致模型跑偏, λnoobj=0.5,
- 1ijnoobj是一个条件表达式,为1ijobj取反
于是我们可以发现一个格子的两个bounding box的分工:一个贡献前景loss,一个贡献背景loss ,不论是前景背景box,我们都希望它们的confidence接近真实confidence,实际上,如果 λnoobj=1, 第四五行可以合并为一项求和,但由于背景box太多,所以才单独拆开加了权重约束
第五行为分类loss,1iobj是一个条件表达式,当有对象出现在这个格子中,取1,否则取0
YOLO里最核心的东西就讲完了,其实可以把YOLO看作固定region proposal的Faster RCNN,于是可以省掉Faster RCNN里region proposal部分,分类和bounding box regression跟Faster RCNN是差不多的
细节
Leaky Relu
网络中只有最后的全连接层用了线性的激活函数,其他层用了leaky Relu:f(x)=max(x, 0.1x)
对比Relu和leaky Relu
在x小于0的时候,用了0.1x,避免使用relu的时候有些单元永远得不到激活(Dead ReLU Problem)
Fast YOLO
卷积层更少,只有9层卷积+2层全连接,每层filters也更少,于是速度更快
实验效果
- 对比当前最好方法:
Fast YOLO速度最快,准确率不太高,但还是比传统方法好,YOLO则比较中庸,速度不慢,准确率也不太高,但也还行。
- 再看看具体是在哪些类型的图片上出错的:
主要是定位不准(毕竟没有精细的region proposal),但是在背景上出错较少(不容易把背景当成对象)
缺点
- 固定的格子是一种很强的空间限制,7x7的格子决定了整张图片最多预测98个对象,对于对象数量很多的图片(比如鸟群)无能为力
- 难以泛化到其他形状或角度的物体上
- 损失函数没有考虑不同尺寸物体的error权重,大box权重和小box权重一样
Summary
Anyway,YOLO结构还是挺优雅的,比Faster RCNN黑科技少多了,更重要的是,它是当时最快的深度学习检测模型,也是很值得肯定的。
读论文系列:Object Detection CVPR2016 YOLO的更多相关文章
- 读论文系列:Deep transfer learning person re-identification
读论文系列:Deep transfer learning person re-identification arxiv 2016 by Mengyue Geng, Yaowei Wang, Tao X ...
- 读论文系列:Object Detection SPP-net
本文为您解读SPP-net: Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition Motivat ...
- 读论文系列:Object Detection NIPS2015 Faster RCNN
转载请注明作者:梦里茶 Faster RCNN在Fast RCNN上更进一步,将Region Proposal也用神经网络来做,如果说Fast RCNN的最大贡献是ROI pooling layer和 ...
- 读论文系列:Object Detection ICCV2015 Fast RCNN
Fast RCNN是对RCNN的性能优化版本,在VGG16上,Fast R-CNN训练速度是RCNN的9倍, 测试速度是RCNN213倍:训练速度是SPP-net的3倍,测试速度是SPP-net的3倍 ...
- 读论文系列:Object Detection ECCV2016 SSD
转载请注明作者:梦里茶 Single Shot MultiBox Detector Introduction 一句话概括:SSD就是关于类别的多尺度RPN网络 基本思路: 基础网络后接多层featur ...
- [论文阅读]Object detection at 200 Frames Per Second
本文提出了一个有效且快速的目标检测器,该目标检测器得速度可以达到200+fps,在Pascal VOC-2007上的mAP比Tiny-Yolo-v2高出14. 本文从以下三个方面对网络进行改进. 网络 ...
- 读论文系列:Nearest Keyword Search in XML Documents中使用的数据结构(CT、ECT)
Reference: [1]Y. Tao, S. Papadopoulos, C. Sheng, K. Stefanidis. Nearest Keyword Search in XML Docume ...
- YOLO object detection with OpenCV
Click here to download the source code to this post. In this tutorial, you’ll learn how to use the Y ...
- 论文阅读笔记三十五:R-FCN:Object Detection via Region-based Fully Convolutional Networks(CVPR2016)
论文源址:https://arxiv.org/abs/1605.06409 开源代码:https://github.com/PureDiors/pytorch_RFCN 摘要 提出了基于区域的全卷积网 ...
随机推荐
- css文字居中、图片居中、div居中解决方案
一.文字居中 若文字只有一行 <!--html代码--> <div class="box"> <p class="text"> ...
- Django学习-23-ModelForm
Model + Form ----> 验证 + 数据库操作 class UserInfo(models.Model): username = models.CharField(max_lengt ...
- IP地址校验
function validIp(fieldname,fielddesc){ var value = $.trim($("#key_"+fieldname).val()); var ...
- jquery 记住账号 记住密码
<body> <label><input type="checkbox" onclick="loginBtn_user()" /& ...
- Hive 编程之DDL、DML、UDF、Select总结
Hive的基本理论与安装可参看作者上一篇博文<Apache Hive 基本理论与安装指南>. 一.Hive命令行 所有的hive命令都可以通过hive命令行去执行,hive命令行中仍有许多 ...
- java保留小数点后位数以及输出反转数字
//方法一double b = 8.0/3.0; //与C语言不同,此处8.0和8有所区分 String format = String.format("%.2f,b"); //表 ...
- 2.3.2 InnoDB内存
前面介绍了一些InnoDB的体系架构(http://www.cnblogs.com/tanwt/p/8530987.html) 接下来介绍一下InnoDB 的内存 1.缓冲池 首先我们需要了解的是In ...
- 【Luogu3807】【模板】卢卡斯定理(数论)
题目描述 给定\(n,m,p(1≤n,m,p≤10^5)\) 求 \(C_{n+m}^m mod p\) 保证\(P\)为\(prime\) \(C\)表示组合数. 一个测试点内包含多组数据. 输入输 ...
- 【USACO09OCT】热浪Heat Wave
题目描述 The good folks in Texas are having a heatwave this summer. Their Texas Longhorn cows make for g ...
- [CF908D]New Year and Arbitrary Arrangement
题面在这里 题意 给定三个数\(k,pa,pb\),每次有\(\frac{pa}{pa+pb}\)的概率往后面添加一个'\(a\)',每次有\(\frac{pb}{pa+pb}\)的概率往后面添加一个 ...