seaborn使用(绘图函数)

数据集分布的可视化

分类数据的绘图

线性关系可视化


一.数据集分布的可视化

  1. distplot
  2. kdeplot
  3. rugplot

1.distplot()

灵活的绘制单变量的分布,传入一组一维数据

默认kde为True,纵坐标为在横坐标区域内分布的概率,曲线表示概率密度函数,在区间上积分值为1

设置kde为False,纵坐标表示落在横坐标bins中的数值的数量

seaborn.distplot(a, bins=None, hist=True, kde=True, rug=False, fit=None, hist_kws=None, kde_kws=None, rug_kws=None, fit_kws=None, color=None, vertical=False, norm_hist=False, axlabel=None, label=None, ax=None)

Parameters:

  • a:传入的一维数据
  • bins:控制直方图的竖直的长方形的数量
  • hist:是否绘制直方图
  • kde:是否绘制高斯和密度估计曲线
  • rug:是否在坐标轴上绘制rug
  • fit:An object with fit method, returning a tuple that can be passed to a pdf method a positional arguments following an grid of values to evaluate the pdf on.
  • color:设置颜色
  • vertical:设置为true,观察值在y轴
  • norm_hist:设置为true,直方图显示的是密度而不是count数
  • axlabel:Name for the support axis label
  • label:Legend label for the relevent component of the plot
  • ax:if provided, plot on this axis

    returns:
  • ax: matplotlib Axes.Returns the Axes object with the plot for further tweaking

2.kdeplot()

拟合或者绘画单元变量或者是双元变量的核密度估计

seaborn.kdeplot(data, data2=None, shade=False, vertical=False, kernel='gau', bw='scott', gridsize=100, cut=3, clip=None, legend=True, cumulative=False, shade_lowest=True, cbar=False, cbar_ax=None, cbar_kws=None, ax=None, **kwargs)

Parameters

  • data:Input data
  • data2:Second input data. If present, a bivariate KDE will be estimated.
  • shade:If True, shade in the area under the KDE curve (or draw with filled contours when data is bivariate)
  • vertical:If True, density is on x-axis
  • kernel:{‘gau’ | ‘cos’ | ‘biw’ | ‘epa’ | ‘tri’ | ‘triw’ } optional.

    Code for shape of kernel to fit with. Bivariate KDE can only use gaussian kernel.
  • bw:{‘scott’ | ‘silverman’ | scalar | pair of scalars }, optional

    Name of reference method to determine kernel size, scalar factor, or scalar for each dimension of the bivariate plot.
  • gridsize:int,optional.Number of discrete points in the evaluation grid.(评估网格中的离散点的数量)
  • cut:scalar,optional.Draw the estimate to cut * bw from the extreme data points.
  • clipt:Lower and upper bounds for datapoints used to fit KDE. Can provide a pair of (low, high) bounds for bivariate plots.定义上下界
  • legend:If True, add a legend or label the axes when possible.添加图例
  • cumulative:If True, draw the cumulative distribution estimated by the kde.累积概率密度
  • shade_lowest:If True, shade the lowest contour of a bivariate KDE plot. Not relevant when drawing a univariate plot or when shade=False. Setting this to False can be useful when you want multiple densities on the same Axes.
  • cbar:If True and drawing a bivariate KDE plot, add a colorbar.
  • cbar_ax:Existing axes to draw the colorbar onto, otherwise space is taken from the main axes.
  • cbar_kws:Keyword arguments for fig.colorbar().
  • ax:Axes to plot on, otherwise uses current axes.
  • kwargs:Other keyword arguments are passed to plt.plot() or plt.contour{f} depending on whether a univariate or bivariate plot is being drawn.

Returns

ax:Axes with plot


3.regplot()

绘制数据的散点分布并且可以进行线性回归模型拟合

seaborn.regplot(x, y, data=None, x_estimator=None, x_bins=None, x_ci='ci', scatter=True, fit_reg=True, ci=95, n_boot=1000, units=None, order=1, logistic=False, lowess=False, robust=False, logx=False, x_partial=None, y_partial=None, truncate=False, dropna=True, x_jitter=None, y_jitter=None, label=None, color=None, marker='o', scatter_kws=None, line_kws=None, ax=None)

patameters

  • x, y: string, series, or vector array

    Input variables. If strings, these should correspond with column names in data. When pandas objects are used, axes will be labeled with the series name.
  • data : DataFrame

    Tidy (“long-form”) dataframe where each column is a variable and each row is an observation.
  • x_estimator : callable that maps vector -> scalar, optional

    Apply this function to each unique value of x and plot the resulting estimate. This is useful when x is a discrete variable. If x_ci is given, this estimate will be bootstrapped and a confidence interval will be drawn.
  • x_bins : int or vector, optional

    Bin the x variable into discrete bins and then estimate the central tendency and a confidence interval. This binning only influences how the scatterplot is drawn; the regression is still fit to the original data. This parameter is interpreted either as the number of evenly-sized (not necessary spaced) bins or the positions of the bin centers. When this parameter is used, it implies that the default of x_estimator is numpy.mean.
  • x_ci : “ci”, “sd”, int in [0, 100] or None, optional

    Size of the confidence interval used when plotting a central tendency for discrete values of x. If "ci", defer to the value of the ci parameter. If "sd", skip bootstrappig and show the standard deviation of the observations in each bin.
  • scatter : bool, optional 是否绘制散点图

    If True, draw a scatterplot with the underlying observations (or the x_estimator values).
  • fit_reg : bool, optional 是否绘制拟合曲线

    If True, estimate and plot a regression model relating the x and y variables.
  • ci : int in [0, 100] or None, optional 回归估计的置信区间的大小

    Size of the confidence interval for the regression estimate. This will be drawn using translucent bands around the regression line. The confidence interval is estimated using a bootstrap; for large datasets, it may be advisable to avoid that computation by setting this parameter to None.
  • n_boot : int, optional

    Number of bootstrap resamples used to estimate the ci. The default value attempts to balance time and stability; you may want to increase this value for “final” versions of plots.
  • units : variable name in data, optional

    If the x and y observations are nested within sampling units, those can be specified here. This will be taken into account when computing the confidence intervals by performing a multilevel bootstrap that resamples both units and observations (within unit). This does not otherwise influence how the regression is estimated or drawn.
  • order : int, optional 如果order大于1,则用polyfit进行多项式回归

    If order is greater than 1, use numpy.polyfit to estimate a polynomial regression.
  • logistic : bool, optional 逻辑回归

    If True, assume that y is a binary variable and use statsmodels to estimate a logistic regression model. Note that this is substantially more computationally intensive than linear regression, so you may wish to decrease the number of bootstrap resamples (n_boot) or set ci to None.
  • lowess : bool, optional

    If True, use statsmodels to estimate a nonparametric lowess model (locally weighted linear regression). Note that confidence intervals cannot currently be drawn for this kind of model.
  • robust : bool, optional 减轻异常值,进行强回归

    If True, use statsmodels to estimate a robust regression. This will de-weight outliers. Note that this is substantially more computationally intensive than standard linear regression, so you may wish to decrease the number of bootstrap resamples (n_boot) or set ci to None.
  • logx : bool, optional y=log(x)的回归,x必须为正数

    If True, estimate a linear regression of the form y ~ log(x), but plot the scatterplot and regression model in the input space. Note that x must be positive for this to work.
  • {x,y}_partial : strings in data or matrices

    Confounding variables to regress out of the x or y variables before plotting.
  • truncate : bool, optional 截取一部分

    By default, the regression line is drawn to fill the x axis limits after the scatterplot is drawn. If truncate is True, it will instead by bounded by the data limits.
  • {x,y}_jitter : floats, optional 增加噪音值

    Add uniform random noise of this size to either the x or y variables. The noise is added to a copy of the data after fitting the regression, and only influences the look of the scatterplot. This can be helpful when plotting variables that take discrete values.
  • label : string

    Label to apply to ether the scatterplot or regression line (if scatter is False) for use in a legend.
  • color : matplotlib color

    Color to apply to all plot elements; will be superseded by colors passed in scatter_kws or line_kws.
  • marker : matplotlib marker code

    Marker to use for the scatterplot glyphs.
  • {scatter,line}_kws : dictionaries

    Additional keyword arguments to pass to plt.scatter and plt.plot.
  • ax : matplotlib Axes, optional

    Axes object to draw the plot onto, otherwise uses the current Axes.

Returns

ax : matplotlib Axes

The Axes object containing the plot

seaborn使用(绘图函数)的更多相关文章

  1. Matlab绘图函数一览

    要查看Matlab所有绘图函数,请从Matlab主界面菜单查看“绘图目录”,或从Matlab帮助文档查看“Types of MATLAB Plots”(在线版本).本文的图和英文解释摘自Matlab帮 ...

  2. 【《zw版·Halcon与delphi系列原创教程》Halcon图层与常用绘图函数

    [<zw版·Halcon与delphi系列原创教程>Halcon图层与常用绘图函数 Halcon的绘图函数,与传统编程vb.c.delphi语言完全不同,     传统编程语言,甚至cad ...

  3. R语言——基本绘图函数

    通过一个综合的例子测试绘图函数 学习的内容是tigerfish老师的教程. 第一节:基本知识 用seq函数产生100位学生的学号. > num = seq(,) > num [] [] [ ...

  4. 《MATLAB从入门到放弃》二维曲线和图形绘制基础(二):使用Help文档学习line、plot、plotyy、subplot、hold绘图函数

    目录: »  plot 最常用的二维曲线绘图函数 >  帮助文档 >  基本使用语法 >  线条的样式.符号和颜色调整 >  图形属性调整 >  使用图形句柄进行设置 » ...

  5. OpenCV中的绘图函数-OpenCV步步精深

    OpenCV 中的绘图函数 画线 首先要为画的线创造出环境,就要生成一个空的黑底图像 img=np.zeros((512,512,3), np.uint8) 这是黑色的底,我们的画布,我把窗口名叫做i ...

  6. 数据分析与展示——Matplotlib基础绘图函数示例

    Matplotlib库入门 Matplotlib基础绘图函数示例 pyplot基础图表函数概述 函数 说明 plt.plot(x,y,fmt, ...) 绘制一个坐标图 plt.boxplot(dat ...

  7. opencv学习之路(4)、Mat类介绍,基本绘图函数

    一.Mat类创建 Mat img;//创建无初始化矩阵 Mat img1(,,CV_8UC1);//200行,100列(长200,宽100) Mat img2(Size(,),CV_8UC3,Scal ...

  8. Matlab 二维绘图函数(plot类)

    plot 功能 绘制二维图形的最基本函数. 语法 //x为向量时,以x的元素值为纵坐标,x的序号为横坐标绘制曲线. //x为矩阵时,以其序号为横坐标,按列绘制每列元素值相对于其序号的曲线. polt( ...

  9. VS2010/MFC编程入门之四十九(图形图像:CDC类及其屏幕绘图函数)

    上一节中鸡啄米讲了文本输出的知识,本节的主要内容是CDC类及其屏幕绘图函数. CDC类简介 CDC类是一个设备上下文类. CDC类提供了用来处理显示器或打印机等设备上下文的成员函数,还有处理与窗口客户 ...

随机推荐

  1. linux系统命令学习系列-定时任务crontab命令

    上节内容复习: at命令的使用 作业:创建一个任务10分钟后关机 at now+10 minutes at>shutdown at><EOT> 本节我们继续来说例行任务管理命令 ...

  2. 在类的成员函数中调用delete this

    最近面试的时候被问到一个问题是,在C++中,能否在类的成员函数中调用delete this,后来网上查了一下资料,关于这个问题说得比较好的有http://blog.sina.com.cn/s/blog ...

  3. Hibernate(六):映射一对多关联关系、双向一对多映射

    在领域模型中,类与类之间最普通的关系就是关联关系. 在UML中,关联是有方向的: 例如:Customer与Order,一个用户能发出多个订单,而一个订单只能属于一个用户. 单向关联 1)从Order到 ...

  4. 3分钟搞掂Set集合

    前言 声明,本文用的是jdk1.8 前面章节回顾: Collection总览 List集合就这么简单[源码剖析] Map集合.散列表.红黑树介绍 HashMap就是这么简单[源码剖析] LinkedH ...

  5. JS事件练习题

    1.点击按钮连续弹窗5次 <div class="noe"> <div class="noe1" onClick="n()" ...

  6. VC2013 代码图,依赖项关系图,等出错解决办法.

    环境WIN10+VS2013+SQL2015 当VS2013代码图,依赖项关系图等出现 数据库连接错误时 去http://www.microsoft.com/zh-cn/download/detail ...

  7. Java 异常基础详解

    目录 1. Java 中的异常 1.1 什么是异常? 1.2 什么是异常处理? 1.2.1 异常处理的优势 1.3 Java 异常类的层次结构 1.4 异常类型 1.5 检查和未检查异常之间的区别 1 ...

  8. [LeetCode] Closest Leaf in a Binary Tree 二叉树中最近的叶结点

    Given a binary tree where every node has a unique value, and a target key k, find the value of the n ...

  9. Python学习【第26篇】:Python系列- 多线程(threading)

    线程的调用方式:threanding模块 import threading import time def sayhi(num): #定义每个线程要运行的函数 print("running ...

  10. [SCOI 2016]幸运数字

    Description A 国共有 n 座城市,这些城市由 n-1 条道路相连,使得任意两座城市可以互达,且路径唯一.每座城市都有一个幸运数字,以纪念碑的形式矗立在这座城市的正中心,作为城市的象征.一 ...