最长k可重线段集问题
和那道可重区间集一样
不过这道题可能有垂直于x轴的线段,这就很烦了,直接连会有负环,判掉又会WA
可以想办法把r端点和l端点分开,又要保证答案不变
那么直接把区间l,r都乘以2,l=r时r++,否则l++,这样r就与l分开,并且对其它没有影响(相当于在x轴上多加了点)
这道题在LOJ上可以切
如果看到了的并且有数据可以卡掉我的代码的请在下面评论
# include <bits/stdc++.h>
# define RG register
# define IL inline
# define Fill(a, b) memset(a, b, sizeof(a))
# define Copy(a, b) memcpy(a, b, sizeof(a))
# define Sqr(a) (1LL * (a) * (a))
using namespace std;
typedef long long ll;
# define int ll
const int _(1010), __(1e6 + 10), INF(2e9);
IL ll Read(){
char c = '%'; ll x = 0, z = 1;
for(; c > '9' || c < '0'; c = getchar()) if(c == '-') z = -1;
for(; c >= '0' && c <= '9'; c = getchar()) x = x * 10 + c - '0';
return x * z;
}
int n, k, l[_], y_1[_], r[_], y_2[_], _w[_], o[_], len;
int cnt, fst[_], w[__], to[__], nxt[__], dis[_], vis[_], S, T, cost[__], pe[_], pv[_], max_flow, max_cost;
queue <int> Q;
IL void Add(RG int u, RG int v, RG int f, RG int co){
cost[cnt] = co; w[cnt] = f; to[cnt] = v; nxt[cnt] = fst[u]; fst[u] = cnt++;
cost[cnt] = -co; w[cnt] = 0; to[cnt] = u; nxt[cnt] = fst[v]; fst[v] = cnt++;
}
IL bool Bfs(){
Q.push(S); Fill(dis, 127); dis[S] = 0; vis[S] = 1;
while(!Q.empty()){
RG int u = Q.front(); Q.pop();
for(RG int e = fst[u]; e != -1; e = nxt[e]){
if(!w[e] || dis[to[e]] <= dis[u] + cost[e]) continue;
dis[to[e]] = dis[u] + cost[e];
pe[to[e]] = e; pv[to[e]] = u;
if(!vis[to[e]]) vis[to[e]] = 1, Q.push(to[e]);
}
vis[u] = 0;
}
if(dis[T] >= dis[T + 1]) return 0;
RG int ret = INF;
for(RG int u = T; u != S; u = pv[u]) ret = min(ret, w[pe[u]]);
for(RG int u = T; u != S; u = pv[u]) w[pe[u]] -= ret, w[pe[u] ^ 1] += ret;
max_cost -= ret * dis[T]; max_flow += ret;
return 1;
}
# undef int
int main(RG int argc, RG char *argv[]){
# define int ll
Fill(fst, -1); n = Read(); k = Read();
for(RG int i = 1; i <= n; ++i){
l[i] = Read(); y_1[i] = Read(); r[i] = Read(); y_2[i] = Read();
_w[i] = sqrt(Sqr(l[i] - r[i]) + Sqr(y_1[i] - y_2[i]));
if(l[i] > r[i]) swap(l[i], r[i]), swap(y_1[i], y_2[i]);
l[i] <<= 1; r[i] <<= 1;
if(l[i] == r[i]) ++r[i];
else ++l[i];
}
for(RG int i = 1; i <= n; ++i) o[++len] = l[i], o[++len] = r[i];
sort(o + 1, o + len + 1); len = unique(o + 1, o + len + 1) - o - 1;
T = len + 1;
for(RG int i = 0; i <= len; ++i) Add(i, i + 1, k, 0);
for(RG int i = 1; i <= n; ++i){
l[i] = lower_bound(o + 1, o + len + 1, l[i]) - o;
r[i] = lower_bound(o + 1, o + len + 1, r[i]) - o;
Add(l[i], r[i], 1, -_w[i]);
}
while(Bfs()); printf("%lld\n", max_cost);
return 0;
}
最长k可重线段集问题的更多相关文章
- 【网络流24题】最长k可重线段集(费用流)
[网络流24题]最长k可重线段集(费用流) 题面 Cogs的数据有问题 Loj 洛谷 题解 这道题和最长k可重区间集没有区别 只不过费用额外计算一下 但是,还是有一点要注意的地方 这里可以是一条垂直的 ...
- 【刷题】LOJ 6227 「网络流 24 题」最长k可重线段集问题
题目描述 给定平面 \(\text{xoy}\) 上 \(n\) 个开线段组成的集合 \(\text{I}\) ,和一个正整数 \(k\) ,试设计一个算法. 从开线段集合 \(\text{I}\) ...
- P3357 最长k可重线段集问题 网络流
P3357 最长k可重线段集问题 题目描述 给定平面 x-O-yx−O−y 上 nn 个开线段组成的集合 II,和一个正整数 kk .试设计一个算法,从开线段集合 II 中选取出开线段集合 S\sub ...
- 网络流24题-最长k可重线段集问题
最长k可重线段集问题 时空限制1000ms / 128MB 题目描述 给定平面 x−O−y 上 n 个开线段组成的集合 I,和一个正整数 k .试设计一个算法,从开线段集合 I 中选取出开线段集合 S ...
- [网络流24题]最长k可重线段集[题解]
最长 \(k\) 可重线段集 题目大意 给定平面 \(x-O-y\) 上 \(n\) 个开线段组成的集合 \(I\) ,和一个正整数 \(k\) .试设计一个算法,从开线段集合 \(I\) 中选取开线 ...
- 【网络流24题22】最长k可重线段集问题
题面戳我 sol 千万!千万!不要理解错题意了!最长K可重,不是说线段最多K可重!你以为计算几何? 原文:使得在\(x\)轴上的任何一点\(p\),\(S\)中与直线\(x=p\)相交的开线段个数不超 ...
- 洛谷P3357 最长k可重线段集问题(费用流)
传送门 其实和最长k可重区间集问题差不多诶…… 把这条开线段给压成x轴上的一条线段,然后按上面说的那种方法做即可 然而有一个坑点是线段可以垂直于x轴,然后一压变成一个点,连上正权环,求最长路……然后s ...
- [网络流24题] 最长k可重线段集问题 (费用流)
洛谷传送门 LOJ传送门 最长k可重区间集问题的加强版 大体思路都一样的,不再赘述,但有一些细节需要注意 首先,坐标有负数,而且需要开$longlong$算距离 但下面才是重点: 我们把问题放到了二维 ...
- 洛谷P3357 最长k可重线段集问题(费用流)
题目描述 给定平面 x-O-yx−O−y 上 nn 个开线段组成的集合 II ,和一个正整数 kk .试设计一个算法,从开线段集合 II 中选取出开线段集合 S\subseteq IS⊆I ,使得在 ...
- 洛谷 P3357 最长k可重线段集问题【最大流】
pre:http://www.cnblogs.com/lokiii/p/8435499.html 和最长k可重区间集问题差不多,也就是价值的计算方法不一样,但是注意这里可能会有x0==x1的情况也就是 ...
随机推荐
- NSIS 设置系统变量
定义 ; include for some of the windows messages defines !include "winmessages.nsh" ; HKLM (a ...
- 发送POST测试请求的若干方法
最近在工作中需要测试发送带Json格式body值的HTTP POST请求.起初,我在Linux环境下使用curl命令去发送请求,但是,在发送的过程中却遇到了一些问题,经过一段时间的摸索,发现了以下几种 ...
- PHPUnit简介及使用
一.PHPUnit是什么? 1.它是一款轻量级的PHP测试框架,地址:http://www.phpunit.cn 2.手册:http://www.phpunit.cn/manual/5.7/zh_cn ...
- 图论算法-网络最大流【EK;Dinic】
图论算法-网络最大流模板[EK;Dinic] EK模板 每次找出增广后残量网络中的最小残量增加流量 const int inf=1e9; int n,m,s,t; struct node{int v, ...
- python2 => python3 踩坑集合
报错内容: ModuleNotFoundError: No module named 'md5' 解析: 这是 python2 的库,python3 已经把它包含进 hashlib 库里了 解决方法 ...
- spring-boot-starter家族成员简介
应用程序starters 以下应用程序starters是Spring Boot在org.springframework.boot组下提供的: springboot使用指南https://docs.sp ...
- 支持ipV6和ipV4的客户端编程
ipv4和ipv6在socket初始化的时候是不一样的. ipv4 socket初始化: int CClient::InitSocket(CString strIP, short portNum) { ...
- 【天坑】ASP.net WebAPI跨域调用问题
最近在做一个项目,前端是VUE,后端是WebAPI,业务也就是一些实体的增删改查.在项目开始的时候我就预计到有跨域的问题,所以也找了一下资料,在Web.Config里面加上了配置信息: <htt ...
- 实战小项目BUG纪录
果然,作为程序员最可爱的女朋友就是各种BUG,解决了你的开发能力和开发效率就会上升到一个新的层次.反之,在你面对BUG的时候,如果轻易的就放弃了,你也就失去了一次自我成长的机会.学习就是这样的,我们有 ...
- Java AES加密案例
AES加密原理 http://www.blogjava.net/amigoxie/archive/2014/07/06/415503.html PHP 加密 https://segmentfault. ...