【Luogu3455】【POI2007】ZAP-Queries(莫比乌斯反演)
【Luogu3455】【POI2007】ZAP-Queries(莫比乌斯反演)
题面
题目描述
FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d。作为FGD的同学,FGD希望得到你的帮助。
输入输出格式
输入格式:
The first line of the standard input contains one integer nn (1\le n\le 50\ 0001≤n≤50 000),denoting the number of queries.
The following nn lines contain three integers each: aa, bb and dd(1\le d\le a,b\le 50\ 0001≤d≤a,b≤50 000), separated by single spaces.
Each triplet denotes a single query.
输出格式:
Your programme should write nn lines to the standard output. The ii'th line should contain a single integer: theanswer to the ii'th query from the standard input.
输入输出样例
输入样例#1:
2
4 5 2
6 4 3
输出样例#1:
3
2
题解
和前面那一道HDU1695GCD是一样的
直接蒯过代码
然后就会获得70分
这样做的复杂度是\(O(Tn)\)
这题会超时
那么,考虑计算的时候。
\(g(i)=(\frac bk/i)·(\frac dk/i)\)
其中一定会有连续的一段使得\(g(i)\)的值是不会变化的
(Gay神说这叫数论分块,复杂度\(O(\sqrt{n}\))
因此,预处理出\(\mu\)的前缀和
利用数论分块即可在\(O(T\sqrt{n})的复杂度里计算出来\)
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define MAX 101000
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int mu[MAX],pri[MAX],tot,s[MAX];
long long g[MAX],n,a,b,K;
bool zs[MAX];
void Get()
{
zs[1]=true;mu[1]=1;
for(int i=2;i<=n;++i)
{
if(!zs[i])pri[++tot]=i,mu[i]=-1;
for(int j=1;j<=tot&&i*pri[j]<=n;++j)
{
zs[i*pri[j]]=true;
if(i%pri[j])mu[i*pri[j]]=-mu[i];
else {mu[i*pri[j]]=0;break;}
}
}
for(int i=1;i<=n;++i)s[i]=s[i-1]+mu[i];
}
long long Calc(int a,int b,int K)
{
a/=K;b/=K;
long long ans=0;
int i=1;
if(a>b)swap(a,b);
while(i<=a)
{
int j=min(a/(a/i),b/(b/i));
ans+=1ll*(s[j]-s[i-1])*(a/i)*(b/i);
i=j+1;
}
return ans;
}
int main()
{
n=100000;
Get();
int T=read();
while(T--)
{
a=read();b=read();K=read();
printf("%lld\n",Calc(a,b,K));
}
return 0;
}
【Luogu3455】【POI2007】ZAP-Queries(莫比乌斯反演)的更多相关文章
- [luogu3455][POI2007]ZAP-Queries【莫比乌斯反演】
题目描述 FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d.作为FGD的同学,FGD希望得 ...
- 【BZOJ】1101 [POI2007]Zap(莫比乌斯反演)
题目 传送门:QWQ 分析 莫比乌斯反演. 还不是很熟练qwq 代码 //bzoj1101 //给出a,b,d,询问有多少对二元组(x,y)满足gcd(x,y)=d.x<=a,y<=b # ...
- BZOJ1101 POI2007 Zap 【莫比乌斯反演】
BZOJ1101 POI2007 Zap Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b, ...
- 【BZOJ1101】[POI2007] Zap(莫比乌斯反演)
点此看题面 大致题意: 求\(\sum_{x=1}^N\sum_{y=1}^M[gcd(x,y)==d]\). 一道类似的题目 推荐先去做一下这道题:[洛谷2257]YY的GCD,来初步了解一下莫比乌 ...
- BZOJ 1101 [POI2007]Zap(莫比乌斯反演)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1101 [题目大意] 求[1,n][1,m]内gcd=k的情况 [题解] 考虑求[1,n ...
- ☆ [POI2007] ZAP-Queries 「莫比乌斯反演」
题目类型:莫比乌斯反演 传送门:>Here< 题意:求有多少对正整数对\((a,b)\),满足\(0<a<A\),\(0<b<B\),\(gcd(a,b)=d\) ...
- 洛谷P3455 [POI2007]ZAP-Queries (莫比乌斯反演)
题意:求$\sum_{i=1}^{a}\sum_{j=1}^{b}[gcd(i,j)==d]$(1<=a,b,d<=50000). 很套路的莫比乌斯反演. $\sum_{i=1}^{n}\ ...
- 【BZOJ】1101: [POI2007]Zap(莫比乌斯+分块)
http://www.lydsy.com/JudgeOnline/problem.php?id=1101 无限膜拜数论和分块orz 首先莫比乌斯函数的一些性质可以看<初等数论>或<具 ...
- [POI2007]ZAP-Queries (莫比乌斯反演+整除分块)
[POI2007]ZAP-Queries \(solution:\) 唉,数论实在有点烂了,昨天还会的,今天就不会了,周末刚证明的,今天全忘了,还不如早点写好题解. 这题首先我们可以列出来答案就是: ...
- 洛谷P3455 [POI2007]ZAP-Queries(莫比乌斯反演)
传送门 设$$f(k)=\sum_{i=1}^{a}\sum_{j=1}^{b}[gcd(i,j)=k]$$ $$g(n)=\sum_{n|k}f(k)=\lfloor\frac{a}{n}\rflo ...
随机推荐
- ACE在windows下的编译及配置(VS2010)
ACE在windows下的编译及配置(VS2010) 分类: -[小西南]- 2013-08-06 16:17 2354人阅读 评论( ...
- 新闻热词:从爬虫到react native应用
背景 由于只想了解当天新增的top热词,减少过多信息干扰,打算做一款app实现这个功能. 架构: 热词抓取 -> mysql <=> nodejs <=> nginx & ...
- Spring Boot让开发如此简单
从html到asp后一直专注.net开发,从.net诞生到如今,从winform到webform,从asp.net到.net mcv,从.net mvc到.net core,从ado.net到linq ...
- IOS开发之记录用户登陆状态,ios开发用户登陆
IOS开发之记录用户登陆状态,ios开发用户登陆 上一篇博客中提到了用CoreData来进行数据的持久化,CoreData的配置和使用步骤还是挺复杂的.但熟悉CoreData的使用流程后,CoreDa ...
- kvm命令总结和虚机器备份迁移
管理kvm虚拟机命令 virsh uri: 查看当前主机上hypervisor的连接路径: virsh connect ...
- angular4升级angular5问题记录之this.location.back()
在之前的项目中,导航回上一个路由采用注入的Location服务,利用浏览器的历史堆栈,导航到上一步. 官方文档也就是这么写的 而然在升级到5.2的版本的时候,在浏览器运行的时候并没有什么问题,在项目打 ...
- 机器学习之支持向量机(二):SMO算法
注:关于支持向量机系列文章是借鉴大神的神作,加以自己的理解写成的:若对原作者有损请告知,我会及时处理.转载请标明来源. 序: 我在支持向量机系列中主要讲支持向量机的公式推导,第一部分讲到推出拉格朗日对 ...
- flask中jinjia2模板引擎使用详解1
在之前的文章中我们介绍过flask调用jinja2模板的基本使用,这次我们来说一下jinjia2模板的使用 Jinja2 在其是一个 Python 2.4 库之前,被设计 为是灵活.快速和安全的. 模 ...
- HDU - 1213 dfs求联通块or并查集
思路:给定一个无向图,判断有几个联通块. AC代码 #include <cstdio> #include <cmath> #include <algorithm> ...
- WEB 小案例 -- 网上书城(二)
寒假结束了,自己的颓废时间同样结束了,早该继续写博客了,尽管我的格式以及内容由于各种原因老被卡,但必须坚持写下去!!! 上次我们对于本案例的数据库部分进行了阐述,这次主要接着上次的内容分享本案例的翻页 ...