BZOJ_4378_[POI2015]Logistyka_树状数组
BZOJ_4378_[POI2015]Logistyka_树状数组
Description
维护一个长度为n的序列,一开始都是0,支持以下两种操作:
1.U k a 将序列中第k个数修改为a。
2.Z c s 在这个序列上,每次选出c个正数,并将它们都减去1,询问能否进行s次操作。
每次询问独立,即每次询问不会对序列进行修改。
Input
第一行包含两个正整数n,m(1<=n,m<=1000000),分别表示序列长度和操作次数。
接下来m行为m个操作,其中1<=k,c<=n,0<=a<=10^9,1<=s<=10^9。
Output
包含若干行,对于每个Z询问,若可行,输出TAK,否则输出NIE。
Sample Input
U 1 5
U 2 7
Z 2 6
U 3 1
Z 2 6
U 2 2
Z 2 6
Z 2 1
Sample Output
TAK
NIE
TAK
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define N 1000050
#define RR register
typedef long long ll;
int n,m,t[N],maxn=1000000000,h[N],p[N];
ll c[N][2];
char opt[10];
inline int rd() {
RR int x=0,f=1; RR char s=getchar();
while(s<'0'||s>'9'){if(s=='-')f=-1;s=getchar();}
while(s>='0'&&s<='9'){x=(x<<3)+(x<<1)+s-'0';s=getchar();}
return x*f;
}
struct A {
int num,v,id,opt,pos;
}a[N];
inline bool cmp1(const A &x,const A &y){return x.num<y.num;}
inline bool cmp2(const A &x,const A &y){return x.id<y.id;}
void fix(int x,int v,int flg) {
for(;x<=m;x+=x&(-x)) c[x][flg]+=v;
}
ll inq(int x,int flg) {
ll re=0;
for(;x;x-=x&(-x)) re+=c[x][flg];
return re;
}
int main() {
n=rd(); m=rd();
int i,j;
for(i=1;i<=m;i++) {
scanf("%s",opt);
if(opt[0]=='U') {
a[i].opt=1; a[i].id=i; a[i].pos=rd(); a[i].num=rd();
}else {
a[i].opt=2; a[i].id=i; a[i].pos=rd(); a[i].num=rd();
}
}
sort(a+1,a+m+1,cmp1); a[0].num=134234;
for(j=0,i=1;i<=m;i++) {
if(a[i].num!=a[i-1].num) j++;
a[i].v=j;
h[j]=a[i].num;
}
sort(a+1,a+m+1,cmp2);
for(i=1;i<=m;i++) {
if(a[i].opt==1) {
int t=a[i].pos;
if(p[t]) {
fix(p[t],-1,1);
fix(p[t],-h[p[t]],2);
}
p[t]=a[i].v;
fix(p[t],1,1);
fix(p[t],h[p[t]],2);
}else {
int k=inq(m,1)-inq(a[i].v-1,1);
if(k>=a[i].pos) {
puts("TAK"); continue;
}
ll sum=inq(a[i].v-1,2);
puts(sum>=1ll*a[i].num*(a[i].pos-k)?"TAK":"NIE");
}
}
}
BZOJ_4378_[POI2015]Logistyka_树状数组的更多相关文章
- 【BZOJ4378】[POI2015]Logistyka 树状数组
[BZOJ4378][POI2015]Logistyka Description 维护一个长度为n的序列,一开始都是0,支持以下两种操作:1.U k a 将序列中第k个数修改为a.2.Z c s 在这 ...
- BZOJ4378[POI2015]Logistyka——树状数组
题目描述 维护一个长度为n的序列,一开始都是0,支持以下两种操作:1.U k a 将序列中第k个数修改为a.2.Z c s 在这个序列上,每次选出c个正数,并将它们都减去1,询问能否进行s次操作.每次 ...
- [POI2015]LOG(树状数组)
今天考试考了这题,所以来贡献\([POI2015]LOG\)的第一篇题解.代码略丑,调了快三个小时才调出来\(AC\)代码. 对于这种小清新数据结构题,所以我觉得树状数组才是这道题的正确打开方式. 首 ...
- 【BZOJ4382】[POI2015]Podział naszyjnika 堆+并查集+树状数组
[BZOJ4382][POI2015]Podział naszyjnika Description 长度为n的一串项链,每颗珠子是k种颜色之一. 第i颗与第i-1,i+1颗珠子相邻,第n颗与第1颗也相 ...
- 【BZOJ4384】[POI2015]Trzy wieże 树状数组
[BZOJ4384][POI2015]Trzy wieże Description 给定一个长度为n的仅包含'B'.'C'.'S'三种字符的字符串,请找到最长的一段连续子串,使得这一段要么只有一种字符 ...
- 树状数组【洛谷P3586】 [POI2015]LOG
P3586 [POI2015]LOG 维护一个长度为n的序列,一开始都是0,支持以下两种操作:1.U k a 将序列中第k个数修改为a.2.Z c s 在这个序列上,每次选出c个正数,并将它们都减去1 ...
- 【bzoj4378】[POI2015]Logistyka 离散化+树状数组
题目描述 维护一个长度为n的序列,一开始都是0,支持以下两种操作:1.U k a 将序列中第k个数修改为a.2.Z c s 在这个序列上,每次选出c个正数,并将它们都减去1,询问能否进行s次操作.每次 ...
- BZOJ 1103: [POI2007]大都市meg [DFS序 树状数组]
1103: [POI2007]大都市meg Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2221 Solved: 1179[Submit][Sta ...
- bzoj1878--离线+树状数组
这题在线做很麻烦,所以我们选择离线. 首先预处理出数组next[i]表示i这个位置的颜色下一次出现的位置. 然后对与每种颜色第一次出现的位置x,将a[x]++. 将每个询问按左端点排序,再从左往右扫, ...
随机推荐
- decode ways(动态规划)
A message containing letters from A-Z is being encoded to numbers using the following mapping: 'A' - ...
- Storyboard的几点缺憾
Storyboard作为iOS主推的UI开发方式,不管接受也好,不接受也好,在未来几年,都会逐渐在产业界流行,之前bignerd在其ios开发第四版中,作者曾经说过一节的Storyboard优缺点分析 ...
- Android开发之深入理解Android 7.0系统权限更改相关文档
http://www.cnblogs.com/dazhao/p/6547811.html 摘要: Android 6.0之后的版本增加了运行时权限,应用程序在执行每个需要系统权限的功能时,需要添加权限 ...
- Kotlin : Retrofit + RxAndroid + Realm
https://jqs7.com/kotlin-retrofit-rxandroid-realm/ 原作者:Ahmed Rizwan 原文链接:Kotlin : Retrofit + RxAndroi ...
- XYC2016上半年工作笔记整理
只要团队在,做那个方向都可能 这个产品的用户群人均价值高 第一次产品介绍会议就介绍了产品的初期全部目标功能 传统互联网人的产品思路比较偏媒体内容服务特性. 产品转化率高说明了其发展势头 任何一个形式变 ...
- 下载Github上某个项目的子文件夹和单个文件
preface Github下的项目可能很大,里面有很多的子文件夹,我们可能只需要使用某个子目录下的资源,可以不用下载完整的repo就能使用. 例如,我想下载这个repo中的字典文件:https:// ...
- MySQL的日志(二):事务日志
本文目录:1.redo log 1.1 redo log和二进制日志的区别 1.2 redo log的基本概念 1.3 日志块(log block) 1.4 log group和redo log fi ...
- Coursera-AndrewNg(吴恩达)机器学习笔记——第三周
一.逻辑回归问题(分类问题) 生活中存在着许多分类问题,如判断邮件是否为垃圾邮件:判断肿瘤是恶性还是良性等.机器学习中逻辑回归便是解决分类问题的一种方法.二分类:通常表示为yϵ{0,1},0:&quo ...
- python笔记:#013#高级变量类型
高级变量类型 目标 列表 元组 字典 字符串 公共方法 变量高级 知识点回顾 Python 中数据类型可以分为 数字型 和 非数字型 数字型 整型 (int) 浮点型(float) 布尔型(bool) ...
- Jupyter-notebook 导出时不显示Input[]代码
参考: https://stackoverflow.com/questions/34818723/export-notebook-to-pdf-without-code 1. 第一个方式是直接在 ...