BZOJ_4378_[POI2015]Logistyka_树状数组
BZOJ_4378_[POI2015]Logistyka_树状数组
Description
维护一个长度为n的序列,一开始都是0,支持以下两种操作:
1.U k a 将序列中第k个数修改为a。
2.Z c s 在这个序列上,每次选出c个正数,并将它们都减去1,询问能否进行s次操作。
每次询问独立,即每次询问不会对序列进行修改。
Input
第一行包含两个正整数n,m(1<=n,m<=1000000),分别表示序列长度和操作次数。
接下来m行为m个操作,其中1<=k,c<=n,0<=a<=10^9,1<=s<=10^9。
Output
包含若干行,对于每个Z询问,若可行,输出TAK,否则输出NIE。
Sample Input
U 1 5
U 2 7
Z 2 6
U 3 1
Z 2 6
U 2 2
Z 2 6
Z 2 1
Sample Output
TAK
NIE
TAK
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define N 1000050
#define RR register
typedef long long ll;
int n,m,t[N],maxn=1000000000,h[N],p[N];
ll c[N][2];
char opt[10];
inline int rd() {
RR int x=0,f=1; RR char s=getchar();
while(s<'0'||s>'9'){if(s=='-')f=-1;s=getchar();}
while(s>='0'&&s<='9'){x=(x<<3)+(x<<1)+s-'0';s=getchar();}
return x*f;
}
struct A {
int num,v,id,opt,pos;
}a[N];
inline bool cmp1(const A &x,const A &y){return x.num<y.num;}
inline bool cmp2(const A &x,const A &y){return x.id<y.id;}
void fix(int x,int v,int flg) {
for(;x<=m;x+=x&(-x)) c[x][flg]+=v;
}
ll inq(int x,int flg) {
ll re=0;
for(;x;x-=x&(-x)) re+=c[x][flg];
return re;
}
int main() {
n=rd(); m=rd();
int i,j;
for(i=1;i<=m;i++) {
scanf("%s",opt);
if(opt[0]=='U') {
a[i].opt=1; a[i].id=i; a[i].pos=rd(); a[i].num=rd();
}else {
a[i].opt=2; a[i].id=i; a[i].pos=rd(); a[i].num=rd();
}
}
sort(a+1,a+m+1,cmp1); a[0].num=134234;
for(j=0,i=1;i<=m;i++) {
if(a[i].num!=a[i-1].num) j++;
a[i].v=j;
h[j]=a[i].num;
}
sort(a+1,a+m+1,cmp2);
for(i=1;i<=m;i++) {
if(a[i].opt==1) {
int t=a[i].pos;
if(p[t]) {
fix(p[t],-1,1);
fix(p[t],-h[p[t]],2);
}
p[t]=a[i].v;
fix(p[t],1,1);
fix(p[t],h[p[t]],2);
}else {
int k=inq(m,1)-inq(a[i].v-1,1);
if(k>=a[i].pos) {
puts("TAK"); continue;
}
ll sum=inq(a[i].v-1,2);
puts(sum>=1ll*a[i].num*(a[i].pos-k)?"TAK":"NIE");
}
}
}
BZOJ_4378_[POI2015]Logistyka_树状数组的更多相关文章
- 【BZOJ4378】[POI2015]Logistyka 树状数组
[BZOJ4378][POI2015]Logistyka Description 维护一个长度为n的序列,一开始都是0,支持以下两种操作:1.U k a 将序列中第k个数修改为a.2.Z c s 在这 ...
- BZOJ4378[POI2015]Logistyka——树状数组
题目描述 维护一个长度为n的序列,一开始都是0,支持以下两种操作:1.U k a 将序列中第k个数修改为a.2.Z c s 在这个序列上,每次选出c个正数,并将它们都减去1,询问能否进行s次操作.每次 ...
- [POI2015]LOG(树状数组)
今天考试考了这题,所以来贡献\([POI2015]LOG\)的第一篇题解.代码略丑,调了快三个小时才调出来\(AC\)代码. 对于这种小清新数据结构题,所以我觉得树状数组才是这道题的正确打开方式. 首 ...
- 【BZOJ4382】[POI2015]Podział naszyjnika 堆+并查集+树状数组
[BZOJ4382][POI2015]Podział naszyjnika Description 长度为n的一串项链,每颗珠子是k种颜色之一. 第i颗与第i-1,i+1颗珠子相邻,第n颗与第1颗也相 ...
- 【BZOJ4384】[POI2015]Trzy wieże 树状数组
[BZOJ4384][POI2015]Trzy wieże Description 给定一个长度为n的仅包含'B'.'C'.'S'三种字符的字符串,请找到最长的一段连续子串,使得这一段要么只有一种字符 ...
- 树状数组【洛谷P3586】 [POI2015]LOG
P3586 [POI2015]LOG 维护一个长度为n的序列,一开始都是0,支持以下两种操作:1.U k a 将序列中第k个数修改为a.2.Z c s 在这个序列上,每次选出c个正数,并将它们都减去1 ...
- 【bzoj4378】[POI2015]Logistyka 离散化+树状数组
题目描述 维护一个长度为n的序列,一开始都是0,支持以下两种操作:1.U k a 将序列中第k个数修改为a.2.Z c s 在这个序列上,每次选出c个正数,并将它们都减去1,询问能否进行s次操作.每次 ...
- BZOJ 1103: [POI2007]大都市meg [DFS序 树状数组]
1103: [POI2007]大都市meg Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2221 Solved: 1179[Submit][Sta ...
- bzoj1878--离线+树状数组
这题在线做很麻烦,所以我们选择离线. 首先预处理出数组next[i]表示i这个位置的颜色下一次出现的位置. 然后对与每种颜色第一次出现的位置x,将a[x]++. 将每个询问按左端点排序,再从左往右扫, ...
随机推荐
- PHP7开启Opcode开启强悍性能
鸟哥在博客中说,提高PHP 7性能的几个tips,第一条就是开启opcache: 记得启用Zend Opcache, 因为PHP7即使不启用Opcache速度也比PHP-5.6启用了Opcache快, ...
- BeautifulSoup详解
BeautifulSoup BeautifulSoup是一个模块,该模块用于接收一个HTML或XML字符串,然后将其进行格式化,之后遍可以使用他提供的方法进行快速查找指定元素,从而使得在HTML或XM ...
- Django代码注意
1.模板标签里面 extend和include是冲突的,有了extend,include无法生效,原因:是底层渲染独立机制设计导致. 2.#coding:utf-8 这句只有放在代码文件第一行才能生效 ...
- mysql select column default value if is null
mysql select column default value if is null SELECT `w`.`city` AS `city`, `w`.`city_en` AS `city_en` ...
- springboot中使用分页,文件上传,jquery的具体步骤(持续更新)
分页: pom.xml 加依赖 <dependency> <groupId>com.github.pagehelper</groupId> <arti ...
- Centos7查看IP
查看IP ip addr : lo: <LOOPBACK,UP,LOWER_UP> mtu qdisc noqueue state UNKNOWN qlen link/loopback : ...
- 第一章 python介绍、变量、数据类型、流程控制语句等
一.python介绍 1.python的诞生 python是一种面向对象的解释型计算机程序设计语言,由荷兰人Guido van Rossum(龟叔)于1989年发明,第一个公开发行版发行于1991年. ...
- mysql-索引、关系、范式
索引 几乎所有的索引都是建立在字段之上 索引:系统根据某种算法,将已有的数据(未来可能新增的数据也算),单独建立一个文件,这个文件能够快速的匹配数据,并且能够快速的找到对应的表中的记录 索引意义 能够 ...
- day07
放完了愚人节的假期后就忘记更新了,这样不好,学习的态度也有点懒散了,需要调整过来,这几天在做一个退款流程,想好了建表.逻辑设计和需求分析,然后就是写具体的代码了,有些东西还是要多学习,不然书到用时方恨 ...
- 单片机开发——02工欲善其事必先利其器(Proteus软件安装破解)
在单片机开发工程中,博主经常通过模拟软件Proteus进行模拟仿真,将编译生成的"HEX"文件下载在单片机芯片中,然后进行后期的debug工作,当模拟仿真完成之后,进行硬件测试部分 ...