POJ_1269_Intersecting Lines_求直线交点

Description

We all know that a pair of distinct points on a plane defines a line and that a pair of lines on a plane will intersect in one of three ways: 1) no intersection because they are parallel, 2) intersect in a line because they are on top of one another (i.e. they are the same line), 3) intersect in a point. In this problem you will use your algebraic knowledge to create a program that determines how and where two lines intersect.
Your program will repeatedly read in four points that define two
lines in the x-y plane and determine how and where the lines intersect.
All numbers required by this problem will be reasonable, say between
-1000 and 1000.

Input

The
first line contains an integer N between 1 and 10 describing how many
pairs of lines are represented. The next N lines will each contain eight
integers. These integers represent the coordinates of four points on
the plane in the order x1y1x2y2x3y3x4y4. Thus each of these input lines
represents two lines on the plane: the line through (x1,y1) and (x2,y2)
and the line through (x3,y3) and (x4,y4). The point (x1,y1) is always
distinct from (x2,y2). Likewise with (x3,y3) and (x4,y4).

Output

There
should be N+2 lines of output. The first line of output should read
INTERSECTING LINES OUTPUT. There will then be one line of output for
each pair of planar lines represented by a line of input, describing how
the lines intersect: none, line, or point. If the intersection is a
point then your program should output the x and y coordinates of the
point, correct to two decimal places. The final line of output should
read "END OF OUTPUT".

Sample Input

5
0 0 4 4 0 4 4 0
5 0 7 6 1 0 2 3
5 0 7 6 3 -6 4 -3
2 0 2 27 1 5 18 5
0 3 4 0 1 2 2 5

Sample Output

INTERSECTING LINES OUTPUT
POINT 2.00 2.00
NONE
LINE
POINT 2.00 5.00
POINT 1.07 2.20
END OF OUTPUT

我们都知道一双独特的点在平面上定义了一条线,一条线在一个平面相交的三种方法:
1)没有交集,因为它们是平行的,
2)相交于一条线,因为他们是在另一个(即他们是相同的线),
3)相交于一点。在这个问题中,你将使用你的代数知识来创建一个程序来决定两条线的交点。
你的程序将会反复地读入四个点,在xy平面上定义两条直线,并确定直线的交点和位置。这个问题所要求的所有数字都是合理的,比如在-1000和1000之间。
应该有N+2行输出。输出的第一行应该读取相交线的输出。然后,每一对平面的线代表一行输入,描述直线的交点:没有,线,或点。如果交点是一个点,那么你的程序应该输出点的x和y坐标,对小数点的两位。输出的最后一行应该是“END OF OUTPUT。
先用两条直线的向量的叉积判断是否平行,然后用一个端点向另外一条直线的两个端点连线求叉积判断是否重合。
都不是就直接求两直线的交点,用平行四边形的面积求。 代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
typedef double f2;
#define eps 1e-6
f2 fabs(f2 x) {return x>0?x:-x;}
struct Point {
f2 x,y;
Point() {}
Point(f2 x_,f2 y_):
x(x_),y(y_) {}
Point operator + (const Point &p) const {return Point(x+p.x,y+p.y);}
Point operator - (const Point &p) const {return Point(x-p.x,y-p.y);}
Point operator * (f2 rate) const {return Point(x*rate,y*rate);}
void rd() {scanf("%lf%lf",&x,&y);}
};
typedef Point Vector;
f2 dot(const Point &p1,const Point &p2) {return p1.x*p2.x+p1.y*p2.y;}
f2 cross(const Point &p1,const Point &p2) {return p1.x*p2.y-p1.y*p2.x;}
struct Line {
Point p;
Vector v;
Line() {}
Line(const Point &p_,const Vector &v_):
p(p_),v(v_) {}
};
Point get_point(const Line &l1,const Line &l2) {
Vector u=l1.p-l2.p;
f2 t=cross(l2.v,u)/cross(l1.v,l2.v);
return l1.p+l1.v*t;
}
void solve() {
Point a1,a2,b1,b2;
a1.rd();a2.rd();b1.rd();b2.rd();
Vector A=a1-a2,B=b1-b2;
if(fabs(cross(A,B))<eps) {
if(fabs(cross(a1-b1,a2-b1))<eps&&fabs(cross(a1-b2,a2-b2))<eps) puts("LINE");
else puts("NONE");
}else {
Point ans=get_point(Line(a2,A),Line(b2,B));
printf("POINT %.2lf %.2lf\n",ans.x,ans.y);
}
}
int main() {
puts("INTERSECTING LINES OUTPUT");
int n;
scanf("%d",&n);
while(n--) {
solve();
}
puts("END OF OUTPUT");
}

												

POJ_1269_Intersecting Lines_求直线交点的更多相关文章

  1. UVa 11437:Triangle Fun(计算几何综合应用,求直线交点,向量运算,求三角形面积)

    Problem ATriangle Fun Input: Standard Input Output: Standard Output In the picture below you can see ...

  2. Uva 11178 Morley's Theorem 向量旋转+求直线交点

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=9 题意: Morlery定理是这样的:作三角形ABC每个 ...

  3. poj 1269 Intersecting Lines——叉积求直线交点坐标

    题目:http://poj.org/problem?id=1269 相关知识: 叉积求面积:https://www.cnblogs.com/xiexinxinlove/p/3708147.html什么 ...

  4. [java作业]Fan、求直线交点、Triangle2D、选课

    public class Fan { public static void main(String[] args) { Fan fan1 = new Fan(), fan2 = new Fan(); ...

  5. poj1269 (叉积求直线的交点)

    题目链接:https://vjudge.net/problem/POJ-1269 题意:给出4个顶点,表示两条直线,求这两条直线的相交情况,重合输出LINE,平行输出NONE,相交于一点输出该点的距离 ...

  6. 谈谈"求线段交点"的几种算法(js实现,完整版)

    "求线段交点"是一种非常基础的几何计算, 在很多游戏中都会被使用到. 下面我就现学现卖的把最近才学会的一些"求线段交点"的算法总结一下, 希望对大家有所帮助.  ...

  7. 计算几何——直线交点poj1269

    求直线交点还是要推一个公式的.. 见博客https://blog.csdn.net/u013050857/article/details/40923789 还要学一下向量的定点比分法 另外poj精度好 ...

  8. MATLAB—求直线或者线段之间的交点坐标

    function CrossPoint( ) %% 求两条直线的交点坐标 x1 = [7.8 8]; y1 = [0.96 0.94]; %line2 x2 = [8.25 8.25]; y2 = [ ...

  9. hdu 2528:Area(计算几何,求线段与直线交点 + 求多边形面积)

    Area Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

随机推荐

  1. search for a range(找出一个数在数组中开始和结束位置)

    Given an array of integers sorted in ascending order, find the starting and ending position of a giv ...

  2. 装修工人如何在网上"找活"

    http://blog.sina.com.cn/s/blog_555e8fe80102wwsz.html ps:其实码农也是一种装修工. 在这个互联网时代,各个行业都在利用网络达到自己的商业目的,作为 ...

  3. Python函数式实现单例特性

    传统的单例一般是基于类的特性实现,Python模块是天生的单例,下面来个简单的借助模块和函数实现单例特性: gdb = None def get_gdb(): global gdb if gdb is ...

  4. Android layout_margin 无效的解决办法

    http://www.aichengxu.com/view/31025 1.如果LinearLayout中使用Android:layout_marginRight不起作用,通过测试原来在android ...

  5. Android Gradle使用总结

    转载请标明出处:http://blog.csdn.net/zhaoyanjun6/article/details/77678577 本文出自[赵彦军的博客] 其他 Groovy 使用完全解析 http ...

  6. Yii2数据接口

    写接口之前先确认那你已经安装了Yii2的basic版或者advanced版,如果还没有,赶快去看这篇文章:composer安装Yii2. 现在默认你已经安装了basic版或者advanced版了,并且 ...

  7. C程序员眼里的Python

    注释 Phython的注释和C语言非常不同,第一种 #开头的注释,类似于C的//开头,而"""对 包围注释,类似于C的/* */,以及xml类的<!--    -- ...

  8. django优化和扩展(一)

    mysql优化基础 进行django产品开发或上线之前,有必要了解一下mysql的基础知识,orm太过抽象,导致很多朋友对于mysql了解得太少,而且orm不像sqlalchemy那样可以跟mysql ...

  9. 使用Coding Pages托管网站

    作者:荒原之梦 Coding官网: https://coding.net Coding Pages官网页面: https://coding.net/pages/ 具体过程如下: 1 注册Coding账 ...

  10. 第三章——分类(Classification)

    3.1 MNIST 本章介绍分类,使用MNIST数据集.该数据集包含七万个手写数字图片.使用Scikit-Learn函数即可下载该数据集: >>> from sklearn.data ...