BZOJ_1712_[Usaco2007 China]Summing Sums 加密_矩阵乘法

Description

    那N只可爱的奶牛刚刚学习了有关密码的许多算法,终于,她们创造出了属于奶牛的加密方法.由于她们并不是经验十足,她们的加密方法非常简单:第i只奶牛掌握着密码的第i个数字,起始的时候是Ci(0≤Ci<90000000).加密的时候,第i只奶牛会计算其他所有奶牛的数字和,并将这个数字和除以98765431取余.在所有奶牛计算完毕之后,每一只奶牛会用自己算得的数字代替原有的数字.也就是说,
这样,她们就完成了一次加密.    在十一月,奶牛们把这个加密法则告诉了驼鹿卡门,卡门惊呆了.之后,在一个浓雾弥漫的平安夜,卡门与奶牛们:“你们的算法十分原始,很容易就被人破解.所以你们要重复这个加密过程T(1≤T≤1414213562)次,才能达到加密效果.”    这回轮到奶牛们惊呆了.很显然,奶牛们特别讨厌做同样的无聊的事情很多次.经过了漫长的争论,卡门和奶牛们终于找到的解决办法:你被刚来加密这些数字.

Input

    第1行输入N和T,之后N行每行一个整数表示初始的Ci.

Output

 
    共N行,每行一个整数,表示T次加密之后的Ci.

Sample Input

3 4
1
0
4

INPUT DETAILS:

Three cows, with starting numbers 1, 0, and 4; four repetitions of the
encryption algorithm.

Sample Output

26
25
29

OUTPUT DETAILS:

The following is a table of the cows' numbers for each turn:

Cows' numbers
Turn Cow1 Cow2 Cow3
0 1 0 4
1 4 5 1
2 6 5 9
3 14 15 11
4 26 25 29

HINT

N<=50000


分析:

设初始时总和为$sum$,发现每次操作后$sum$会乘上$(n-1)$。

对于第$i$个奶牛,从$(\begin{matrix}c[i]&sum-c[i]\end{matrix})$ 到$(\begin{matrix}sum-c[i]&sum*(n-1)-sum+c[i]=sum*(n-2)+c[i]\end{matrix})$

得到转移矩阵$(\begin{matrix} 0&n-1\\1&n-2 \end{matrix})$

然后矩阵乘法即可。

代码:

#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
typedef long long ll;
ll mod=98765431,sum;
int n,t,a[50050];
struct Mat {
ll v[2][2];
Mat() { memset(v,0,sizeof(v));}
Mat operator*(const Mat &x)const {
Mat re;int i,j,k;
for(i=0;i<2;i++) {
for(j=0;j<2;j++) {
for(k=0;k<2;k++) {
(re.v[i][j]+=v[i][k]*x.v[k][j])%=mod;
}
}
}
return re;
}
};
Mat qp(Mat x,int y) {
Mat I;
I.v[0][0]=I.v[1][1]=1;
while(y) {
if(y&1ll) I=I*x;
x=x*x;
y>>=1ll;
}
return I;
}
int main() {
scanf("%d%d",&n,&t);
Mat x; x.v[0][0]=0; x.v[0][1]=n-1; x.v[1][0]=1; x.v[1][1]=n-2;
Mat T=qp(x,t);
int i;
for(i=1;i<=n;i++) {
scanf("%d",&a[i]);
sum+=a[i];
}
for(i=1;i<=n;i++) {
printf("%lld\n",(a[i]*T.v[0][0]%mod+(sum-a[i])%mod*T.v[1][0]%mod)%mod);
}
}

BZOJ_1712_[Usaco2007 China]Summing Sums 加密_矩阵乘法的更多相关文章

  1. 1712: [Usaco2007 China]Summing Sums 加密

    1712: [Usaco2007 China]Summing Sums 加密 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 338  Solved: 12 ...

  2. bzoj 1712: [Usaco2007 China]Summing Sums 加密

    1712: [Usaco2007 China]Summing Sums 加密 Description     那N只可爱的奶牛刚刚学习了有关密码的许多算法,终于,她们创造出了属于奶牛的加密方法.由于她 ...

  3. 【bzoj1712】[Usaco2007 China]Summing Sums 加密 矩阵乘法

    题目描述 那N只可爱的奶牛刚刚学习了有关密码的许多算法,终于,她们创造出了属于奶牛的加密方法.由于她们并不是经验十足,她们的加密方法非常简单:第i只奶牛掌握着密码的第i个数字,起始的时候是Ci(0≤C ...

  4. BZOJ1712 : [Usaco2007 China]Summing Sums 加密

    设$s[i]$为进行$i$次加密后所有奶牛数字的和,有$s[i]=(n-1)s[i-1]$. 设$c[i]$为某头固定的奶牛进行$i$次加密后的数字, 若$i$为奇数,有: \[c[i]=((1-n) ...

  5. B20J_1297_[SCOI2009]迷路_矩阵乘法

    B20J_1297_[SCOI2009]迷路_矩阵乘法 题意:有向图 N 个节点,从节点 0 出发,必须恰好在 T 时刻到达节点 N-1.总共有多少种不同的路径? 2 <= N <= 10 ...

  6. BZOJ_1875_[SDOI2009]HH去散步_矩阵乘法

    BZOJ_1875_[SDOI2009]HH去散步_矩阵乘法 Description HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离. 但 是同时H ...

  7. BZOJ_5015_[Snoi2017]礼物_矩阵乘法

    BZOJ_5015_[Snoi2017]礼物_矩阵乘法 Description 热情好客的请森林中的朋友们吃饭,他的朋友被编号为 1-N,每个到来的朋友都会带给他一些礼物:.其中,第 一个朋友会带给他 ...

  8. BZOJ_4870_[Shoi2017]组合数问题_矩阵乘法

    BZOJ_4870_[Shoi2017]组合数问题_矩阵乘法 Description Input 第一行有四个整数 n, p, k, r,所有整数含义见问题描述. 1 ≤ n ≤ 10^9, 0 ≤ ...

  9. BZOJ_4002_[JLOI2015]有意义的字符串_矩阵乘法

    BZOJ_4002_[JLOI2015]有意义的字符串_矩阵乘法 Description B 君有两个好朋友,他们叫宁宁和冉冉.有一天,冉冉遇到了一个有趣的题目:输入 b;d;n,求 Input 一行 ...

随机推荐

  1. Xamarin引用第三方包错误解决方法

    http://www.cnblogs.com/ThenDog/p/7623720.html

  2. sublime使用package control安装插件

    sublime本身可以集成Package Control来进行插件安装,非常方便. 1. 安装package control(插件包管理) 1.1 进入https://packagecontrol.i ...

  3. mybatis源码解读(二)——构建Configuration对象

    Configuration 对象保存了所有mybatis的配置信息,主要包括: ①. mybatis-configuration.xml 基础配置文件 ②. mapper.xml 映射器配置文件 1. ...

  4. Universal USB Installer – Easy as 1 2 3

    Universal USB Installer aka UUI is a Live Linux Bootable USB Creator that allows you to choose from ...

  5. 关于django migrations的使用

    django 1.8之后推出的migrations机制使django的数据模式管理更方便容易,现在简单谈谈他的机制和一些问题的解决方法: 1.谈谈机制:migrations机制有两个指令,第一个是ma ...

  6. 网站内容禁止复制和粘贴、另存为的js代码

    1.使右键和复制失效 方法1: 在网页中加入以下代码: 复制代码代码如下: <script language="Javascript"> document.oncont ...

  7. Oracle基础快速入门

    数据库体系结构 物理存储结构与Oracle启动时关系是 依次打开 参数(startup nomount).控制(startup mount).数据文件(open) 物理存储结构:指实际的文件存储形式 ...

  8. 用ASP.NET Core 2.0 建立规范的 REST API

    什么是REST REST 是 Representational State Transfer 的缩写. 它是一种架构的风格, 这种风格基于一套预定义的规则, 这些规则描述了网络资源是如何定义和寻址的. ...

  9. spring 整合 shiro框架

    shiro是用来干嘛的?从它的官网上(http://shiro.apache.org/)基本可以了解到,她主要提供以下功能: (1)Authentication(认证) (2)Authorizatio ...

  10. (Lesson2)根据类名称和属性获得元素-JavaScript面向对象

    描述:在编写选择器的时候遇到的一根问题,我需要实现Jquery的选择器功能,第一个根据ID获取Element非常简单,第二个根据类(class)去获取Element集合,这个相对复杂,而根据name和 ...