There are a total of n courses you have to take, labeled from 0 to n-1.

Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]

Given the total number of courses and a list of prerequisite pairs, is it possible for you to finish all courses?

Example 1:

Input: 2, [[1,0]]
Output: true
Explanation: There are a total of 2 courses to take.
  To take course 1 you should have finished course 0. So it is possible.

Example 2:

Input: 2, [[1,0],[0,1]]
Output: false
Explanation: There are a total of 2 courses to take.
  To take course 1 you should have finished course 0, and to take course 0 you should
  also have finished course 1. So it is impossible.

Note:

  1. The input prerequisites is a graph represented by a list of edges, not adjacency matrices. Read more about how a graph is represented.
  2. You may assume that there are no duplicate edges in the input prerequisites.
Hints:
  1. This problem is equivalent to finding if a cycle exists in a directed graph. If a cycle exists, no topological ordering exists and therefore it will be impossible to take all courses.
  2. There are several ways to represent a graph. For example, the input prerequisites is a graph represented by a list of edges. Is this graph representation appropriate?
  3. Topological Sort via DFS - A great video tutorial (21 minutes) on Coursera explaining the basic concepts of Topological Sort.
  4. Topological sort could also be done via BFS.

这道课程清单的问题对于我们学生来说应该不陌生,因为在选课的时候经常会遇到想选某一门课程,发现选它之前必须先上了哪些课程,这道题给了很多提示,第一条就告诉了这道题的本质就是在有向图中检测环。 LeetCode 中关于图的题很少,有向图的仅此一道,还有一道关于无向图的题是 Clone Graph。个人认为图这种数据结构相比于树啊,链表啊什么的要更为复杂一些,尤其是有向图,很麻烦。第二条提示是在讲如何来表示一个有向图,可以用边来表示,边是由两个端点组成的,用两个点来表示边。第三第四条提示揭示了此题有两种解法,DFS 和 BFS 都可以解此题。先来看 BFS 的解法,定义二维数组 graph 来表示这个有向图,一维数组 in 来表示每个顶点的入度。开始先根据输入来建立这个有向图,并将入度数组也初始化好。然后定义一个 queue 变量,将所有入度为0的点放入队列中,然后开始遍历队列,从 graph 里遍历其连接的点,每到达一个新节点,将其入度减一,如果此时该点入度为0,则放入队列末尾。直到遍历完队列中所有的值,若此时还有节点的入度不为0,则说明环存在,返回 false,反之则返回 true。代码如下:

解法一:

class Solution {
public:
bool canFinish(int numCourses, vector<vector<int>>& prerequisites) {
vector<vector<int>> graph(numCourses, vector<int>());
vector<int> in(numCourses);
for (auto a : prerequisites) {
graph[a[]].push_back(a[]);
++in[a[]];
}
queue<int> q;
for (int i = ; i < numCourses; ++i) {
if (in[i] == ) q.push(i);
}
while (!q.empty()) {
int t = q.front(); q.pop();
for (auto a : graph[t]) {
--in[a];
if (in[a] == ) q.push(a);
}
}
for (int i = ; i < numCourses; ++i) {
if (in[i] != ) return false;
}
return true;
}
};

下面来看 DFS 的解法,也需要建立有向图,还是用二维数组来建立,和 BFS 不同的是,像现在需要一个一维数组 visit 来记录访问状态,这里有三种状态,0表示还未访问过,1表示已经访问了,-1 表示有冲突。大体思路是,先建立好有向图,然后从第一个门课开始,找其可构成哪门课,暂时将当前课程标记为已访问,然后对新得到的课程调用 DFS 递归,直到出现新的课程已经访问过了,则返回 false,没有冲突的话返回 true,然后把标记为已访问的课程改为未访问。代码如下:

解法二:

class Solution {
public:
bool canFinish(int numCourses, vector<vector<int>>& prerequisites) {
vector<vector<int>> graph(numCourses, vector<int>());
vector<int> visit(numCourses);
for (auto a : prerequisites) {
graph[a[]].push_back(a[]);
}
for (int i = ; i < numCourses; ++i) {
if (!canFinishDFS(graph, visit, i)) return false;
}
return true;
}
bool canFinishDFS(vector<vector<int>>& graph, vector<int>& visit, int i) {
if (visit[i] == -) return false;
if (visit[i] == ) return true;
visit[i] = -;
for (auto a : graph[i]) {
if (!canFinishDFS(graph, visit, a)) return false;
}
visit[i] = ;
return true;
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/207

类似题目:

Minimum Height Trees

Course Schedule II

Course Schedule III

Graph Valid Tree

参考资料:

https://leetcode.com/problems/course-schedule/

https://leetcode.com/problems/course-schedule/discuss/58524/Java-DFS-and-BFS-solution

https://leetcode.com/problems/course-schedule/discuss/58516/Easy-BFS-Topological-sort-Java

https://leetcode.com/problems/course-schedule/discuss/162743/JavaC%2B%2BPython-BFS-Topological-Sorting-O(N-%2B-E)

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Course Schedule 课程清单的更多相关文章

  1. [LeetCode] 207. Course Schedule 课程清单

    There are a total of n courses you have to take, labeled from 0 to n-1. Some courses may have prereq ...

  2. [LeetCode] Course Schedule II 课程清单之二

    There are a total of n courses you have to take, labeled from 0 to n - 1. Some courses may have prer ...

  3. [LeetCode] Course Schedule III 课程清单之三

    There are n different online courses numbered from 1 to n. Each course has some duration(course leng ...

  4. [LeetCode] 210. Course Schedule II 课程清单之二

    There are a total of n courses you have to take, labeled from 0 to n-1. Some courses may have prereq ...

  5. [LeetCode] 207. Course Schedule 课程安排

    There are a total of n courses you have to take, labeled from 0 to n - 1. Some courses may have prer ...

  6. 【LeetCode】1462. 课程安排 IV Course Schedule IV (Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 DFS 日期 题目地址:https://leetcod ...

  7. LeetCode Course Schedule II

    原题链接在这里:https://leetcode.com/problems/course-schedule-ii/ 题目: There are a total of n courses you hav ...

  8. [LeetCode] Course Schedule I (207) & II (210) 解题思路

    207. Course Schedule There are a total of n courses you have to take, labeled from 0 to n - 1. Some ...

  9. LeetCode - Course Schedule 解题报告

    以前从来没有写过解题报告,只是看到大肥羊河delta写过不少.最近想把写博客的节奏给带起来,所以就挑一个比较容易的题目练练手. 原题链接 https://leetcode.com/problems/c ...

随机推荐

  1. “NOSQL” 杂谈

    引言: nosql 的兴起和革命,在我看来已经开始逐渐影响到了传统的sql的地位,但是仅仅是影响而已,取代是不太可能的. 正文: 两年前,一个偶然的机会开始接触到 nosql ( mongodb ). ...

  2. EF(Entity Framework)系统学习系列

    好久没写博客了,继续开启霸屏模式,好了,废话不多说,这次准备重新系统学一下EF,一个偶然的机会找到了一个学习EF的网站(http://www.entityframeworktutorial.net/) ...

  3. Jsp的九大对象,七大动作,三大指令

    jsp九大内置对象:1>out 向客户端输出数据,字节流.如out.print(" dgaweyr"); 2>request 接收客户端的http请求.String g ...

  4. .NET4.5新特性之异步编程(Async和Await)的使用

    一.简介 首先来看看.net的发展中的各个阶段的特性:NET 与C# 的每个版本发布都是有一个"主题".即:C#1.0托管代码→C#2.0泛型→C#3.0LINQ→C#4.0动态语 ...

  5. Node.js写文件的三种方法

    Node.js写文件的三种方式: 1.通过管道流写文件 采用管道传输二进制流,可以实现自动管理流,可写流不必当心可读流流的过快而崩溃,适合大小文件传输(推荐) var readStream = fs. ...

  6. ubuntu安装navicat及常见问题解决

    1.安装navicat Step1: 下载Navicat ,网址:http://www.navicat.com/en/download/download.html Step2:进入下载目录,解压压缩包 ...

  7. 如何解决例如i++的线程不安全性

    AtomicBoolean.AtomicInteger.AtomicLong.AtomicReference 各种原子性关键字,可以解决比如i++的线程不安全性的因素

  8. jdk链表笔记

    LinkedList LinkedList是双链表,并且有头尾指针 数据结构 public class LinkedList extends AbstractSequentialList implem ...

  9. [deviceone开发]-底部弹出选择

    一.简介 个人上传的第一个示例源码,两天空闲时间写的,一点简单组件,写的挺乱还没啥注释,仅供新手学习. 底部弹出选择,可滑动选择选项,如果停留在选项中间,可自动校正位置,加了一点简单的动画效果,需要的 ...

  10. Array&String总结

    每一部分总结后有实例代码,代码中黄色框方法不改变原数组.PS:所有实例结果均一一运行所得. 符号说明: array和string共享    参数 Array --普通方法 栈:   pop()   p ...