博客中的文章均为 meelo 原创,请务必以链接形式注明 本文地址

Xtreme 10.0 - Dog Walking

题目来源 第10届IEEE极限编程大赛

https://www.hackerrank.com/contests/ieeextreme-challenges/challenges/dog-walking

Your friend, Alice, is starting a dog walking business. She already has K dog walkers employed, and today there are N dogs that need to be walked. Each dog walker can walk multiple dogs at the same time, so the dogs will be arranged into K nonempty groups, and each group will then be walked by a single dog walker. However, smaller dogs can be aggressive towards larger dogs, and that makes it harder to walk them together.

More formally, if the smallest dog in a group has size a, and the largest dog in the group has size b, then the range of the group is defined as b-a. In particular, the range of a group consisting of a single dog is 0. The smaller the range of a group is, the easier it is to walk that particular group. Hence Alice would like to distribute the dogs among the dog walkers so that the sum of ranges of the groups is minimized. Also, since she doesn't want any of the dog walkers to feel left out, she makes sure each dog walker gets to walk at least one dog.

Given NK and the sizes of the dogs, can you help Alice determine what is the minimum sum of ranges over the Kgroups if the dogs are arranged optimally?

Input Format

The first line of input contains t, 1 ≤ t ≤ 5, which gives the number of test cases.

Each test case starts with a line containing two integers N, the number of dogs, and K, the number of employees, separated by a single space. Then N lines follow, one for each dog, containing an integer x representing the size of the corresponding dog.

Constraints

1 ≤ K ≤ N ≤ 105, 0 ≤ x ≤ 109

Output Format

For each test case, you should output, on a line by itself, the minimum sum of ranges over the K groups if the dogs are arranged optimally.

Sample Input

2
4 2
3
5
1
1
5 4
30
40
20
41
50

Sample Output

2
1

Explanation

In the first test case there are four dogs: one of size 3, one of size 5, and two of size 1. There are two dog walkers, and we want to distribute the dogs among them. One optimal way to do this is to make one dog walker walk the dogs of size 3 and 5, and the other dog walker walk the two dogs of size 1. Then the first group has range 5-3=2, while the second group has range 1-1=0, giving a total of 2+0=2.

In the second test case there are dogs of size 30, 40, 20, 41 and 50, and four dog walkers. There are so many dog walkers that we can ask all but one of them to walk a single dog. We will make the last dog walker walk the dogs of size 40 and 41, which gives a range of 41-40=1. All other groups have range 0, so the total is 1.

题目解析

这题是一个贪心算法的题目。

最初N条狗各自归为1组,然后选择代价最低(大小最接近)的两条狗合并,合并N-K次。

算法:

1) 对N条狗的大小从小到大dogs排序

2) 计算相邻两条狗大小的差距保存到数组diff中

3) 对diff从小到大排序

4) 对diff数组前N-K个数求和

程序

C++

#include <cmath>
#include <cstdio>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std; int main() {
/* Enter your code here. Read input from STDIN. Print output to STDOUT */
int T;
cin >> T;
while(T--) {
int N, K;
cin >> N >> K;
vector<int> dogs;
for(int i=; i<N; i++) {
int d;
cin >> d;
dogs.push_back(d);
} sort(dogs.begin(), dogs.end());
vector<int> diff;
for(int i=; i<N; i++) {
diff.push_back(dogs[i]-dogs[i-]);
}
sort(diff.begin(), diff.end());
int cost = ;
for(int i=; i<N-K; i++) {
cost += diff[i];
}
cout << cost << endl;
}
return ;
}

IEEEXtreme 10.0 - Dog Walking的更多相关文章

  1. IEEEXtreme 10.0 - Inti Sets

    这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Inti Sets 题目来源 第10届IEEE极限编程大赛 https://www.hackerrank.c ...

  2. IEEEXtreme 10.0 - Painter's Dilemma

    这是 meelo 原创的 IEEEXtreme极限编程比赛题解 Xtreme 10.0 - Painter's Dilemma 题目来源 第10届IEEE极限编程大赛 https://www.hack ...

  3. IEEEXtreme 10.0 - Ellipse Art

    这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Ellipse Art 题目来源 第10届IEEE极限编程大赛 https://www.hackerrank ...

  4. IEEEXtreme 10.0 - Counting Molecules

    这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Counting Molecules 题目来源 第10届IEEE极限编程大赛 https://www.hac ...

  5. IEEEXtreme 10.0 - Checkers Challenge

    这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Checkers Challenge 题目来源 第10届IEEE极限编程大赛 https://www.hac ...

  6. IEEEXtreme 10.0 - Game of Stones

    这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Game of Stones 题目来源 第10届IEEE极限编程大赛 https://www.hackerr ...

  7. IEEEXtreme 10.0 - Playing 20 Questions with an Unreliable Friend

    这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Playing 20 Questions with an Unreliable Friend 题目来源 第1 ...

  8. IEEEXtreme 10.0 - Full Adder

    这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Full Adder 题目来源 第10届IEEE极限编程大赛 https://www.hackerrank. ...

  9. IEEEXtreme 10.0 - N-Palindromes

    这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - N-Palindromes 题目来源 第10届IEEE极限编程大赛 https://www.hackerra ...

随机推荐

  1. 【agc004C】AND Grid

    Portal --> agc004C Description 给你一个\(n*m\)的网格图\(A\),有一些格子是'#',现在要构造出两个新的网格图\(B\)和\(C\)满足: 1.如果\(A ...

  2. web项目引用tomcat中的jar

    web项目引用tomcat中的jar https://blog.csdn.net/zjsdrs/article/details/77868827 如下图所示

  3. struts2初探(一)

    首先需要了解Struts2框架的运行过程: request从发送到服务器,即tomcat,然后tomcat参考web.xml,发现所有的url都需要经过struts2的过滤, Struts2调用dof ...

  4. get与post请求简单理解

    一般在浏览器中输入网址访问资源都是通过GET方式:在FORM提交中,可以通过Method指定提交方式为GET或者POST,默认为GET提交 Http定义了与服务器交互的不同方法,最基本的方法有4种,分 ...

  5. 【题解】【LibreOJ Beta Round #5】游戏 LOJ 531 基环树 博弈论

    Prelude 题目链接:萌萌哒传送门♪(^∇^*) Subtask 1 & 2 这是什么鬼题面... 首先要看出,这就是一个基环树博弈. 具体题意:给出一个基环内向树,一个棋子初始在\(1\ ...

  6. 一元回归_ols参数解读(推荐AAA)

    sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005269003&a ...

  7. MySQL免安装版配置部署

    MySQL下载地址:http://dev.mysql.com/downloads/mysql/ 1.Windows下安装MySQL 我下的是最新版的MySQL,解压后,目录如下: 将解压目录下默认文件 ...

  8. NOIP 2014 提高组 Day1

    期望得分:100+100+50=250 实际得分:100+100+50=250 此次NOIP  ZJ省一分数线:500,SD:345 https://www.luogu.org/problem/lis ...

  9. 51 nod 1109 01组成的N的倍数

    1109 01组成的N的倍数 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题  收藏  关注 给定一个自然数N,找出一个M,使得M > 0且M是N的倍数,并且 ...

  10. [php]apache虚拟主机配置

    1.所谓虚拟主机的配置,即url与磁盘目录的绑定 2.在httpd.conf中查询Virtual host,发现有注释说明需要在conf/extra/httpd-vhosts.conf中进行配置. 3 ...