题目传送门

【模板】2-SAT问题

题目背景

2-SAT 问题 模板

题目描述

有n个布尔变量 $x_1/~x_n$​ ,另有$m$个需要满足的条件,每个条件的形式都是“ $x_i$ 为$true/false$或 $x_j$​ 为$true/false$”。比如“ $x_1$​ 为真或 $x_3$​ 为假”、“ $x_7$​ 为假或 $x_2$​ 为假”。$2-SAT$ 问题的目标是给每个变量赋值使得所有条件得到满足。

输入输出格式

输入格式:

第一行两个整数$n$和$m$,意义如体面所述。

接下来$m$行每行$4$个整数 $i a j b$,表示“ $x_i$ 为$a$或 $x_j$ 为$b$”($a,b\in {0,1}$)

输出格式:

如无解,输出“IMPOSSIBLE”(不带引号); 否则输出"POSSIBLE"(不带引号),下 一行n个整数 $x_1$ ~ $x_n$​ ( $x_i\in {0,1}$),表示构造出的解。

输入输出样例

输入样例#1:

3 1
1 1 3 0
输出样例#1:

POSSIBLE
0 0 0

说明

1<=n,m<=1e6 , 前3个点卡小错误,后面5个点卡效率,由于数据随机生成,可能会含有( 10 0 10 0)之类的坑


  分析:

  $2-SAT$模板题,特地练下手。

  经典的$2-SAT$模型就不多说了,需要注意的是每次建图时要注意点之间的关系,一旦关系多起来就容易建图建错。(好吧其实是我自己建图建错了两次233333)

  Code:

//It is made by HolseLee on 21st Aug 2018
//Luogu.org P4782
#include<bits/stdc++.h>
#define Max(a,b) (a)>(b)?(a):(b)
#define Min(a,b) (a)<(b)?(a):(b)
using namespace std; const int N=1e6+;
int n,m,bel[N<<],scc,idx,dfn[N<<],low[N<<];
bool vis[N<<];
vector<int>e[N<<];
stack<int>sta; inline int read()
{
char ch=getchar();int num=;bool flag=false;
while(ch<''||ch>''){if(ch=='-')flag=true;ch=getchar();}
while(ch>=''&&ch<=''){num=num*+ch-'';ch=getchar();}
return flag?-num:num;
} inline void tarjan(int u)
{
dfn[u]=low[u]=++idx;
sta.push(u);vis[u]=true;
int v;
for(int i=;i<e[u].size();++i){
v=e[u][i];
if(!dfn[v]){
tarjan(v);
low[u]=Min(low[u],low[v]);
}else if(vis[v]){
low[u]=Min(low[u],dfn[v]);
}
}
if(dfn[u]==low[u]){
scc++;
do{
v=sta.top();sta.pop();
vis[v]=false;bel[v]=scc;
}while(v!=u);
}
} int main()
{
n=read();m=read();
int a,b,x,y;
for(int i=;i<=m;++i){
a=read(),x=read(),b=read(),y=read();
e[a+(x^)*n].push_back(b+y*n);
e[b+(y^)*n].push_back(a+x*n);
}
for(int i=;i<=(n<<);++i)
if(!dfn[i])tarjan(i);
for(int i=;i<=n;++i)
if(bel[i]==bel[i+n]){
printf("IMPOSSIBLE\n");
return ;
}
printf("POSSIBLE\n");
for(int i=;i<=n;++i){
printf("%d ",(bel[i]>bel[i+n]));
}
return ;
}

洛谷P4782 【模板】2-SAT问题 [2-SAT]的更多相关文章

  1. [洛谷P4782] [模板] 2-SAT 问题

    NOIp后第一篇题解. NOIp我考的很凉啊...... 题目传送门 之前讲过怎么判断2-SAT是否存在解. 至于如何构造一组解: 我们想到对tarjan缩点后的图进行拓扑排序. 那么对于代表0状态的 ...

  2. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  3. 洛谷P3375 [模板]KMP字符串匹配

    To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...

  4. LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)

    为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...

  5. 【AC自动机】洛谷三道模板题

    [题目链接] https://www.luogu.org/problem/P3808 [题意] 给定n个模式串和1个文本串,求有多少个模式串在文本串里出现过. [题解] 不再介绍基础知识了,就是裸的模 ...

  6. 洛谷-P5357-【模板】AC自动机(二次加强版)

    题目传送门 -------------------------------------- 过年在家无聊补一下这周做的几道AC自动机的模板题 sol:AC自动机,还是要解决跳fail边产生的重复访问,但 ...

  7. 洛谷.1919.[模板]A*B Problem升级版(FFT)

    题目链接:洛谷.BZOJ2179 //将乘数拆成 a0*10^n + a1*10^(n-1) + ... + a_n-1的形式 //可以发现多项式乘法就模拟了竖式乘法 所以用FFT即可 注意处理进位 ...

  8. 洛谷.3803.[模板]多项式乘法(FFT)

    题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...

  9. 洛谷.3803.[模板]多项式乘法(NTT)

    题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...

  10. 洛谷P3385 [模板]负环 [SPFA]

    题目传送门 题目描述 暴力枚举/SPFA/Bellman-ford/奇怪的贪心/超神搜索 输入输出格式 输入格式: 第一行一个正整数T表示数据组数,对于每组数据: 第一行两个正整数N M,表示图有N个 ...

随机推荐

  1. Spring quartz定时任务service注入问题

    今天想单元测试一下spring中的quartz定时任务,job类的大致结构和下面的SpringQtz1类相似,我的是实现的org.quartz.Job接口,到最后总是发现job类里注入的service ...

  2. 学大伟业 2017 国庆 Day1

    期望得分:100+100+20=220 实际得分:100+100+20=220 (好久没有期望==实际了 ,~\(≧▽≦)/~) 对于 a........a 如果 第1个a 后面出现的第1个b~z 是 ...

  3. CSS预处理器们

    CSS预处理器有很多,最早的是2006年的Less,到后来2010年的SASS,还有现在也很出名的Stylus.不过要使用它们都要使用一些工具,比如Less的话要使用Grunt或者Gulp或者Node ...

  4. weblogic 包里面有中文文件名 会报错

    目前:没有解决,只要有中文启动就报错 http://bbs.csdn.net/topics/10055670 http://www.2cto.com/os/201406/311394.html

  5. PHP深浅拷贝

    举个栗子: <?php class Example1 { public $name; public function __construct($name) { $this->name = ...

  6. Linux 内核进程管理之进程ID【转】

    转自:http://www.cnblogs.com/hazir/p/linux_kernel_pid.html Linux 内核使用 task_struct 数据结构来关联所有与进程有关的数据和结构, ...

  7. 关于linux系统如何实现fork的研究(一)【转】

    转自:http://www.aichengxu.com/linux/4157180.htm 引言 fork函数是用于在linux系统中创建进程所使用,而最近看了看一个fork()调用是怎么从应用到gl ...

  8. python实战===python程序打包成exe

    推荐PyInstaller项目www.pyinstaller.org   安装方法: 先跑pip install pywin32再跑pip install pyinstaller即可 可用一句命令打包 ...

  9. ActiveMQ-如何使用JMS API?

    JMS编程模型 JMS定义了Java中访问消息中间件的一组接口,主要包括ConnectionFactory.Connection.Session.Destination.MessageProducer ...

  10. java版云笔记(三)

    登录与注册写好了下来就是主页,今天写的是主页加载时笔记本列表的显示,ajax是固定的就不重点说了.主要说一下jQuery.data() 函数和jQuery.on() 函数. 注:这个项目的sql文件, ...