题目传送门

线性基

题目描述

给定n个整数(数字可能重复),求在这些数中选取任意个,使得他们的异或和最大。

输入输出格式

输入格式:

第一行一个数n,表示元素个数

接下来一行n个数

输出格式:

仅一行,表示答案。

输入输出样例

输入样例#1:

2
1 1
输出样例#1:

1

说明

$1 \leq n \leq 50, 0 \leq S_i \leq 2 ^ {50}$


  分析:

  一道线性基模板。<不会线性基的看这里>

  直接构造线性基然后贪心选取异或得到最大答案即可.

  Code:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=;
ll n,b[N],ans;
int main()
{
scanf("%lld",&n);ll x;
for(ll i=;i<=n;i++){
scanf("%lld",&x);
for(ll j=;j>=;j--){
if(!(x>>j))continue;
if(!b[j]){b[j]=x;break;}
else x^=b[j]; }
}
for(ll i=;i>=;i--){
if((ans^b[i])>ans)ans^=b[i];}
printf("%lld",ans);
return ;
}

洛谷P3812 【模板】线性基 [线性基]的更多相关文章

  1. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  2. 洛谷CF895C Square Subsets(线性基)

    洛谷传送门 不知道线性基是什么东西的可以看看蒟蒻的总结 题意: 给你n个数,每个数<=70,问有多少个集合,满足集合中所有数相乘是个完全平方数(空集除外) 题解: 完全看不出这玩意儿和线性基有什 ...

  3. 【题解】洛谷P1070 道路游戏(线性DP)

    次元传送门:洛谷P1070 思路 一开始以为要用什么玄学优化 没想到O3就可以过了 我们只需要设f[i]为到时间i时的最多金币 需要倒着推回去 即当前值可以从某个点来 那么状态转移方程为: f[i]= ...

  4. 洛谷P3375 [模板]KMP字符串匹配

    To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...

  5. LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)

    为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...

  6. 【AC自动机】洛谷三道模板题

    [题目链接] https://www.luogu.org/problem/P3808 [题意] 给定n个模式串和1个文本串,求有多少个模式串在文本串里出现过. [题解] 不再介绍基础知识了,就是裸的模 ...

  7. 洛谷-P5357-【模板】AC自动机(二次加强版)

    题目传送门 -------------------------------------- 过年在家无聊补一下这周做的几道AC自动机的模板题 sol:AC自动机,还是要解决跳fail边产生的重复访问,但 ...

  8. 洛谷.1919.[模板]A*B Problem升级版(FFT)

    题目链接:洛谷.BZOJ2179 //将乘数拆成 a0*10^n + a1*10^(n-1) + ... + a_n-1的形式 //可以发现多项式乘法就模拟了竖式乘法 所以用FFT即可 注意处理进位 ...

  9. 洛谷.3803.[模板]多项式乘法(FFT)

    题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...

  10. 洛谷.3803.[模板]多项式乘法(NTT)

    题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...

随机推荐

  1. linux 中 permission denied的问题

    想在linux中运行一个脚步,却提示permission denied. 文件权限不允许. 为了获得执行权限,借助chmod指令修改文件权限即可. 1.如果是运行程序时出现此提示,一般执行chmod ...

  2. 每个Web开发者都需要具备的9个软技能

    对于一份工作,你可能专注于修炼自己的内功,会在不自觉中忽视软技能.硬技能决定你是否能得到工作,而软技能能够表明你是否适合这份工作和适应工作环境等.所有的公司都有属于自己的文化,并努力将这些文化传承下去 ...

  3. opencv 高级拼接函数Stitcher

    Stitcher https://docs.opencv.org/trunk/d8/d19/tutorial_stitcher.html http://blog.csdn.net/czl389/art ...

  4. 【BZOJ】1176: [Balkan2007]Mokia

    [题意]n*n的矩阵,初始值为0(题面有误),m次操作,增加一个格子的权值,或查询子矩阵和.n<=2*10^6.(m应该较题面所述偏大). [算法]CDQ分治(算法知识见数据结构) [题解]三维 ...

  5. 【洛谷 P1772】 [ZJOI2006]物流运输(Spfa,dp)

    题目链接 \(g[i][j]\)表示不走在\(i\text{~}j\)时间段中会关闭的港口(哪怕只关\(1\)天)从\(1\)到\(m\)的最短路. \(f[i]\)表示前\(i\)天的最小花费.于是 ...

  6. VC拷贝字符串到剪切板

    ] ="中华人民共和国"; DWORD dwLength = ; // 要复制的字串长度 HANDLE hGlobalMemory = GlobalAlloc(GHND, dwLe ...

  7. filezilla显示隐藏文件

    我们在习惯使用flashfxp等工具,但是随着主机商限制较多,这些老的FTP工具不怎么好用了,比如主机商会推荐使用到Filezilla等工具.但是比如息壤主机,我们在管理linux环境下htacess ...

  8. win10环境变量

    jdk8 JAVA_HOME D:\devsoft\jdk\jdk1.8 CLASSPATH .;%JAVA_HOME%\lib\dt.jar;%JAVA_HOME%\lib\tools.jar pa ...

  9. java类中访问属性

    package first; public class for_protect { private int age=10; int number = 100; public void show(){ ...

  10. KKT条件和拉格朗日乘子法详解

    \(\frac{以梦为马}{晨凫追风}\) 最优化问题的最优性条件,最优化问题的解的必要条件和充分条件 无约束问题的解的必要条件 \(f(x)\)在\(x\)处的梯度向量是0 有约束问题的最优性条件 ...