自己看读完pytorch封装的源码后,自己又重新写了一边(模仿其书写格式), 一些问题在代码中说明。

import torch
import torchvision
import argparse
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms, models
import torch.utils.model_zoo as model_zoo
import math __all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
'resnet152'] model_urls = {
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
} def conv3x3(in_planes, out_planes, stride=1):
# 3x3 kernel
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) # get BasicBlock which layers < 50(18, 34)
class BasicBlock(nn.Module):
expansion = 1 def __init__(self, in_planes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(in_planes, planes, stride)
self.BN = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes, stride) # outplane is not in_planes*self.expansion, is planes
self.stride = stride
self.downsample = downsample def forward(self, x):
residual = x # mark the data before BasicBlock
x = self.conv1(x)
x = self.BN(x)
x = self.relu(x)
x = self.conv2(x)
x = self.BN(x) # BN operation is before relu operation
if self.downsample is not None: # is not None
residual = self.downsample(residual) # resize the channel
x += residual
x = self.relu(x)
return x # get BottleBlock which layers >= 50
class Bottleneck(nn.Module):
expansion = 4 # the factor of the last layer of BottleBlock and the first layer of it def __init__(self, in_planes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.con2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes*4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes*4)
self.downsample = downsample
self.stride = stride
self.relu = nn.ReLU(inplace=True) def forward(self, x):
residual = x
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x) x = self.con2(x)
x = self.bn2(x)
x = self.relu(x) x = self.conv3(x)
x = self.bn3(x)
if self.downsample is not None:
residual = self.downsample(residual) x += residual
x = self.relu(x) return x class ResNet(nn.Module): def __init__(self, block, layers, num_classes=100):
self.inplanes = 64 # the original channel
super(ResNet, self).__init__()
self.num_classes = num_classes
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.max_pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
# 以下构建残差块, 具体参数可以查看resnet参数表
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.average_pool = nn.AvgPool2d(7, stride=1)
self.fc = nn.Linear(512*block.expansion, num_classes)
# 对卷积和与BN层初始化,论文中也提到过
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
# 这里是为了结局两个残差块之间可能维度不匹配无法直接相加的问题,相同类型的残差块只需要改变第一个输入的维数就好,后面的输入维数都等于输出维数
def _make_layer(self, block, planes, num_blocks, stride=1):
downsample = None # 扩维
if stride != 1 or self.inplanes != block.expansion * planes:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, block.expansion*planes,kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(block.expansion*planes)
) layers = []
# 特判第一残差块
layers.append(block(self.inplanes, planes, downsample=downsample)) # outplane is planes not planes*block.expansion
self.inplanes = planes * block.expansion
for i in range(1, num_blocks):
layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.max_pool(x) x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.average_pool(x)
x = x.view(x.size(0), -1) # resize batch-size x H
x = self.fc(x)
return x def resnet18(pretrained=False, **kwargs):
"""Constructs a ResNet-18 model. Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet18']))
return model def resnet34(pretrained=False, **kwargs):
"""Constructs a ResNet-34 model. Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet34']))
return model def resnet50(pretrained=False, **kwargs):
"""Constructs a ResNet-50 model. Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet50']))
return model def resnet101(pretrained=False, **kwargs):
"""Constructs a ResNet-101 model. Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet101']))
return model def resnet152(pretrained=False, **kwargs):
"""Constructs a ResNet-152 model. Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet152']))
return model

[源码解读] ResNet源码解读(pytorch)的更多相关文章

  1. RxJava系列6(从微观角度解读RxJava源码)

    RxJava系列1(简介) RxJava系列2(基本概念及使用介绍) RxJava系列3(转换操作符) RxJava系列4(过滤操作符) RxJava系列5(组合操作符) RxJava系列6(从微观角 ...

  2. 入口开始,解读Vue源码(一)-- 造物创世

    Why? 网上现有的Vue源码解析文章一搜一大批,但是为什么我还要去做这样的事情呢?因为觉得纸上得来终觉浅,绝知此事要躬行. 然后平时的项目也主要是Vue,在使用Vue的过程中,也对其一些约定产生了一 ...

  3. JVM源码分析之SystemGC完全解读

    JVM源码分析之SystemGC完全解读 概述 JVM的GC一般情况下是JVM本身根据一定的条件触发的,不过我们还是可以做一些人为的触发,比如通过jvmti做强制GC,通过System.gc触发,还可 ...

  4. Spring源码-循环依赖源码解读

    Spring源码-循环依赖源码解读 笔者最近无论是看书还是从网上找资料,都没发现对Spring源码是怎么解决循环依赖这一问题的详解,大家都是解释了Spring解决循环依赖的想法(有的解释也不准确,在& ...

  5. Derek解读Bytom源码-持久化存储LevelDB

    作者:Derek 简介 Github地址:https://github.com/Bytom/bytom Gitee地址:https://gitee.com/BytomBlockchain/bytom ...

  6. Derek解读Bytom源码-创世区块

    作者:Derek 简介 Github地址:https://github.com/Bytom/bytom Gitee地址:https://gitee.com/BytomBlockchain/bytom ...

  7. Redux学习之解读applyMiddleware源码深入middleware工作机制

    随笔前言 在上一周的学习中,我们熟悉了如何通过redux去管理数据,而在这一节中,我们将一起深入到redux的知识中学习. 首先谈一谈为什么要用到middleware 我们知道在一个简单的数据流场景中 ...

  8. SpringMVC源码解读 - RequestMapping注解实现解读 - RequestMappingInfo

    使用@RequestMapping注解时,配置的信息最后都设置到了RequestMappingInfo中. RequestMappingInfo封装了PatternsRequestCondition, ...

  9. SpringMVC源码解读 - RequestMapping注解实现解读 - RequestCondition体系

    一般我们开发时,使用最多的还是@RequestMapping注解方式. @RequestMapping(value = "/", param = "role=guest& ...

随机推荐

  1. Python并行编程(三):线程同步之Lock

    1.基础概念 当两个或以上对共享内存操作的并发线程中,如果有一个改变数据,又没有同步机制的条件下,就会产生竞争条件,可能会导致执行无效代码.bug等异常行为. 竞争条件最简单的解决方法是使用锁.锁的操 ...

  2. django中同源策略和跨域解决方案

    一  同源策略 1.1何谓同源? 如果两个页面的协议,端口(如果有指定)和域名都相同,则两个页面具有相同的源. 举个例子: 下表给出了相对http://a.xyz.com/dir/page.html同 ...

  3. oracle编程艺术--runstst工具

    runstats工具是< oracle database 9i/10g/11g编程艺术 深入数据库体系结构>作者写的一个统计性能工具,能对做同一件事的两个方法进行比较,得到孰优孰劣的结果. ...

  4. bat批处理异备文件、压缩文件

    1.压缩本地文件,并把压缩后的文件复制到其他机器 net use Z: \\192.168.135.1\share_linux a123456! /user:chaoqun.guo set bath= ...

  5. Spark日志级别修改

    摘要 在学习使用Spark的过程中,总是想对内部运行过程作深入的了解,其中DEBUG和TRACE级别的日志可以为我们提供详细和有用的信息,那么如何进行合理设置呢,不复杂但也绝不是将一个INFO换为TR ...

  6. Java队列存储结构及实现

    一.队列(Queue) 队列是一种特殊的线性表,它只允许在表的前段(front)进行删除操作,只允许在表的后端(rear)进行插入操作.进行插入操作的端称为队尾,进行删除操作的端称为队头. 对于一个队 ...

  7. 关于手机适配中的rem的学习随笔

    githup 下载地址 :https://github.com/comjustforfun/remformobile adaptivejs利用rem解决移动端页面开发的自适应问题 页面模板初始化的时候 ...

  8. CCF 工资计算

    思路: 因为T<=10000,所以税前极限金额肯定不超过1000000(设个比较大的数字就行),然后逐一计算即可. #include<cstdio> int main() { int ...

  9. 一次http请求中的信息

    什么是Http 一次http传输,是由请求报文和响应报文来完成的 HTTP协议是Hyper Text Transfer Protocol(超文本传输协议)的缩写,是用于从万维网(WWW:World W ...

  10. 3.1.7. Cross validation of time series data

    3.1.7. Cross validation of time series data Time series data is characterised by the correlation bet ...