洛谷P4705 玩游戏(生成函数+多项式运算)
题面
题解
妈呀这辣鸡题目调了我整整三天……最后发现竟然是因为分治\(NTT\)之后的多项式长度不是\(2\)的幂导致把多项式的值存下来的时候发生了一些玄学错误……玄学到了我\(WA\)的点全都是\(WA\)在\(2\)的幂次行里……
看到这种题目二话不说先推倒
[x^k]Ans
&={1\over nm}\sum_{i=1}^n\sum_{j=1}^m\left(a_i+b_j\right)^k\\
&={1\over nm}\sum_{i=1}^n\sum_{j=1}^m\sum_{p=0}^k{k\choose p}{a_i}^p{b_j}^{k-p}\\
&={k!\over nm}\sum_{p=0}^k{\sum_{i=1}^n{a_i}^p\over p!}{\sum_{j=1}^m{b_j}^{k-p}\over (k-p)!}\\
\end{aligned}
\]
然后这就被画成了一个卷积的形式
定义两个多项式\(A(x)=\sum_{i=0}^\infty x^i\sum_{j=1}^n{a_j}^i\),和\(B(x)=\sum_{i=0}^\infty x^i\sum_{j=1}^m{b_j}^i\),只要我们能求出这两个多项式的系数,然后一通乱搞之后就能求出\(Ans\)了
然后继续推倒
A(x)
&=\sum_{i=0}^\infty x^i\sum_{j=1}^n{a_j}^i\\
&=\sum_{j=1}^n\sum_{i=0}^\infty {a_j}^ix^i\\
&=\sum_{i=1}^n{1\over 1-a_ix}\\
&=\sum_{i=1}^n {a_i}^0+{a_i}^1x^1+{a_i}^2x^2+...
\end{aligned}
\]
所以……这玩意儿该咋算啊……
我们设
G(x)
&=\sum_{i=1}^n{-a_i\over 1-a_ix}\\
&=\sum_{i=1}^n-{a_i}^1-{a_i}^2x-{a_i}^3x^2-...\\
\end{aligned}
\]
那么就有\(A(x)=-xG(x)+n\)
然而我还是不会算\(G\)啊……
那就继续推倒
G(x)
&=\sum_{i=1}^n{-a_i\over 1-a_ix}\\
&=\sum_{i=1}^n\ln'\left(1-a_ix\right)\\
&=\ln'\left(\prod_{i=1}^n (1-a_ix)\right)
\end{aligned}
\]
分治\(NTT\)就行啦
然后没有然后了
我错了多项式比计算几何难调多了
//minamoto
#include<bits/stdc++.h>
#define R register
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
char sr[1<<21],z[20];int C=-1,Z=0;
inline void Ot(){fwrite(sr,1,C+1,stdout),C=-1;}
void print(R int x){
if(C>1<<20)Ot();if(x<0)sr[++C]='-',x=-x;
while(z[++Z]=x%10+48,x/=10);
while(sr[++C]=z[Z],--Z);sr[++C]='\n';
}
const int N=(1<<18)+5,P=998244353,Gi=332748118;
inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
inline int dec(R int x,R int y){return x-y<0?x-y+P:x-y;}
inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
int ksm(R int x,R int y){
R int res=1;
for(;y;y>>=1,x=mul(x,x))if(y&1)res=mul(res,x);
return res;
}
vector<int>r[21];int rt[2][N<<1],inv[N],fac[N],ifac[N],lim,d;
inline void init(R int len){lim=1,d=0;while(lim<len)lim<<=1,++d;}
void Pre(){
fp(d,1,18){
r[d].resize(1<<d);
fp(i,1,(1<<d)-1)r[d][i]=(r[d][i>>1]>>1)|((i&1)<<(d-1));
}
inv[0]=inv[1]=fac[0]=fac[1]=ifac[0]=ifac[1]=1;
fp(i,2,262144){
fac[i]=mul(fac[i-1],i),
inv[i]=mul(P-P/i,inv[P%i]),
ifac[i]=mul(ifac[i-1],inv[i]);
}
for(R int t=(P-1)>>1,i=1,x,y;i<=262144;i<<=1,t>>=1){
x=ksm(3,t),y=ksm(Gi,t);
rt[1][i]=rt[0][i]=1;
fp(k,1,i-1){
rt[1][k+i]=mul(rt[1][k+i-1],x),
rt[0][k+i]=mul(rt[0][k+i-1],y);
}
}
}
int rev[N];
void NTT(int *A,int ty){
fp(i,0,lim-1)if(i<r[d][i])swap(A[i],A[r[d][i]]);
for(R int mid=1;mid<lim;mid<<=1)
for(R int j=0;j<lim;j+=(mid<<1))
for(R int k=0,t;k<mid;++k)
A[j+k+mid]=dec(A[j+k],t=mul(rt[ty][mid+k],A[j+k+mid])),
A[j+k]=add(A[j+k],t);
if(!ty)for(R int i=0,inv=ksm(lim,P-2);i<lim;++i)A[i]=mul(A[i],inv);
}
void Inv(int *a,int *b,int len){
if(len==1)return b[0]=ksm(a[0],P-2),void();
Inv(a,b,len>>1),init(len<<1);
static int A[N],B[N];
fp(i,0,len-1)A[i]=a[i],B[i]=b[i];
fp(i,len,lim-1)A[i]=B[i]=0;
NTT(A,1),NTT(B,1);
fp(i,0,lim-1)A[i]=mul(A[i],mul(B[i],B[i]));
NTT(A,0);
fp(i,0,len-1)b[i]=dec(add(b[i],b[i]),A[i]);
fp(i,len,lim-1)b[i]=0;
}
void Ln(int *a,int *b,int len){
static int A[N],B[N];
fp(i,1,len-1)A[i-1]=mul(a[i],i);A[len-1]=0;
Inv(a,B,len),init(len<<1);fp(i,len,lim-1)A[i]=B[i]=0;
NTT(A,1),NTT(B,1);
fp(i,0,lim-1)A[i]=mul(A[i],B[i]);
NTT(A,0);
fp(i,1,len-1)b[i]=mul(A[i-1],inv[i]);b[0]=0;
fp(i,len,lim-1)b[i]=0;
}
int D[25][N];
void solve(int *a,int d,int l,int r){
if(l==r)return D[d][0]=1,D[d][1]=P-a[l],void();
int mid=(l+r)>>1;
solve(a,d,l,mid),solve(a,d+1,mid+1,r),init(r-l+1+1);
static int A[N],B[N];
fp(i,0,mid-l+1)A[i]=D[d][i];fp(i,mid-l+2,lim-1)A[i]=0;
fp(i,0,r-mid)B[i]=D[d+1][i];fp(i,r-mid+1,lim-1)B[i]=0;
NTT(A,1),NTT(B,1);
fp(i,0,lim-1)A[i]=mul(A[i],B[i]);
NTT(A,0);
fp(i,0,r-l+1)D[d][i]=A[i];
fp(i,r-l+2,lim-1)D[d][i]=0;
}
int a[N],b[N],ak[N],bk[N];
int n,m,t;
void calc(int *a,int *b,int n,int t){
static int A[N],B[N];
solve(a,1,1,n);
init(t+1);int len=lim;
fp(i,0,n)A[i]=D[1][i];
fp(i,n+1,len-1)A[i]=0;
Ln(A,B,len);
fp(i,1,len-1)B[i-1]=mul(B[i],i);B[len-1]=0;
b[0]=n;
fp(i,1,t)b[i]=mul(P-B[i-1],ifac[i]);
}
void Mul(int *a,int *b){
init(t<<1);
NTT(a,1),NTT(b,1);
fp(i,0,lim-1)a[i]=mul(a[i],b[i]);
NTT(a,0);
int invm=ksm(mul(n,m),P-2);
fp(i,1,t)print(1ll*a[i]*fac[i]%P*invm%P);
}
int main(){
// freopen("testdata.in","r",stdin);
Pre();
n=read(),m=read();
fp(i,1,n)a[i]=read();
fp(i,1,m)b[i]=read();
t=read();
calc(a,ak,n,t),calc(b,bk,m,t);
Mul(ak,bk);
return Ot(),0;
}
洛谷P4705 玩游戏(生成函数+多项式运算)的更多相关文章
- 洛谷P4705 玩游戏 [生成函数,NTT]
传送门 这是两个月之前写的题,但没写博客.现在回过头来看一下发现又不会了-- 还是要写博客加深记忆. 思路 显然期望可以算出总数再乘上\((nm)^{-1}\). 那么有 \[ \begin{alig ...
- 洛谷 P4705 玩游戏 解题报告
P4705 玩游戏 题意:给长为\(n\)的\(\{a_i\}\)和长为\(m\)的\(\{b_i\}\),设 \[ f(x)=\sum_{k\ge 0}\sum_{i=1}^n\sum_{j=1}^ ...
- [洛谷P4705]玩游戏
题目大意:对于每个$k\in[1,t]$,求:$$\dfrac{\sum\limits_{i=1}^n\sum\limits_{j=1}^m(a_i+b_j)^k}{nm}$$$n,m,t\leqsl ...
- 洛谷 P4705 玩游戏
题目分析 题目要求的是: \[ \sum_{i=1}^n\sum_{j=1}^m(a_i+b_j)^x(x\in [1,T]) \] 利用二项式定理化式子, \[ \begin{aligned} &a ...
- FFT/NTT总结+洛谷P3803 【模板】多项式乘法(FFT)(FFT/NTT)
前言 众所周知,这两个东西都是用来算多项式乘法的. 对于这种常人思维难以理解的东西,就少些理解,多背板子吧! 因此只总结一下思路和代码,什么概念和推式子就靠巨佬们吧 推荐自为风月马前卒巨佬的概念和定理 ...
- 洛谷 P2197 nim游戏
洛谷 P2197 nim游戏 题目描述 甲,乙两个人玩Nim取石子游戏. nim游戏的规则是这样的:地上有n堆石子(每堆石子数量小于10000),每人每次可从任意一堆石子里取出任意多枚石子扔掉,可以取 ...
- 洛谷 P1965 转圈游戏
洛谷 P1965 转圈游戏 传送门 思路 每一轮第 0 号位置上的小伙伴顺时针走到第 m 号位置,第 1 号位置小伙伴走到第 m+1 号位置,--,依此类推,第n − m号位置上的小伙伴走到第 0 号 ...
- Luogu P4705 玩游戏
题目描述 Alice 和 Bob 又在玩游戏. 对于一次游戏,首先 Alice 获得一个长度为 的序列 ,Bob 获得一个长度为 的序列 bb.之后他们各从自己的序列里随机取出一个数,分别设 ...
- 【流水调度问题】【邻项交换对比】【Johnson法则】洛谷P1080国王游戏/P1248加工生产调度/P2123皇后游戏/P1541爬山
前提说明,因为我比较菜,关于理论性的证明大部分是搬来其他大佬的,相应地方有注明. 我自己写的部分换颜色来便于区分. 邻项交换对比是求一定条件下的最优排序的思想(个人理解).这部分最近做了一些题,就一起 ...
随机推荐
- 网络编程基础之Socket套接字
一.Socket介绍 1.什么是socket? Socket是应用层与TCP/IP协议族通信的中间软件抽象层,它是一组接口.在设计模式中,Socket其实就是一个门面模式,它把复杂的TCP/IP协议族 ...
- node模块示例
来源于慕课网课程:http://www.imooc.com/video/6701 (视频) 模块的流程图如下: 做一个学校的模块示例 建一个学生的js studet.js function add(s ...
- 团队作业4Alpha冲刺
仓库地址:https://gitee.com/ILoveFunGame/game_strategy_network.git 第一天 2018/6/13 1.1 今日完成任务情况以及遇到的问题. 1.1 ...
- Java 枚举类型设置数据字典
package org.seckill.enums; /** * 使用枚举表示常量数据字典 * Created by 18401 on 2017/11/25. */ public enum Secki ...
- 关于iOS URL缓存机制原理解析
关于URL缓存机制中 利用request对象判断是否缓存 其实request是否相等的判断依据是URLString是否相等
- eval 是执行一段完整的js字符串代码,并将结果返回
var strArray="[{"message1":{ "id": "-1","content": &quo ...
- (转)介绍一些.net开源项目
强大的插件系统,通过Addin构建成一个功能齐全的.net开发IDE.核心是AddInTree.跟随这个项目开发许多有用的组件,比如功能文本编辑器(ICSharpCode.TextEditor),Sh ...
- 安装CentOS 6.4 64 位操作系统
1.安装 CentOS 6.4 64位操作系统的一些困境: 1.1 CentOS 6.4 64位操作系统的ISO文件有4G多,通过U盘安装的方式已经不可取(FAT32 只支持最大4G文件); 1.2 ...
- Android Touch 事件总结
---恢复内容开始--- 1.Touch事件传递机制 过程有点儿类似于栈, ViewGroup的子类有都继承它的以下3个方法: public boolean dispatchTouchEvent(Mo ...
- 【转载】Redis优化经验
转载地址:http://blog.sina.com.cn/s/blog_4be888450100z2ze.html 内存管理优化 Redis Hash是value内部为一个HashMap,如果该Map ...