模板如下:

扩展版本:
求解a^k=b %p 求k,最小的k一定小于p,否则会重复,否则无解
***********************
gcd(a,p)=1时
设k=mi+v m=sqrt(p);
i,v<=m a^v=b*(a^-m)^i %p 打表map for i=0~m-1 (a^i,i)
for i=0~m-1
check a^v存在 ****************************
gcd(a,p)=t时
(A/t)^c*A^(x-c)=B/(t^c) %C/(t^c) c max
A^(x-c)=B/(t^c)*(A/t)^-c %C/(t^c) const int NN = 99991 ; //sqrt(p)
int Hash[NN][2] ;
void insert(int id , LL vv){
LL v = vv % NN ;
while( Hash[v][0]!=-1 && Hash[v][1]!=vv){
v++ ; if(v == NN) v-=NN ;
}
if(Hash[v][0]==-1 ){
Hash[v][1] = vv ; Hash[v][0] = id ;
}
}
int find(LL vv){
LL v = vv % NN ;
while( Hash[v][0]!=-1 && Hash[v][1]!=vv){
v++ ;if(v == NN) v-=NN ;
}
if( Hash[v][0]==-1 ) return -1;
return Hash[v][0] ;
}
void ex_gcd(LL a , LL b , LL& x , LL& y){
if(b == 0){
x = 1 ; y = 0 ;
return ;
}
ex_gcd(b , a%b , x, y) ;
LL t = x ;
x = y;
y = t - a/b*y ;
}
LL baby_step(LL A, LL B , LL C){ //A^x=B %C 最小x,__gcd g++使用
LL D=1 % C ,d=0;
if(__gcd(A,C)!=1){
LL ans = 1 ;
for(LL i=0;i<=50;i++){
if(ans == B) return i ;
ans = ans * A % C ;
}
LL tmp ;
while( (tmp=__gcd(A,C)) != 1 ){
if(B % tmp) return -1 ;
d++ ;
B/=tmp ;
C/=tmp ;
D = D*A/tmp%C ;
} //D*A^(x-d)=B %C
} //printf("D=%lld A=%lld B=%lld C=%lld d=%lld\n",D,A,B,C,d);
memn(Hash);
LL M = ceil( sqrt(C*1.0) ) ;
LL rr = 1 ;
for(int i=0;i<M;i++){
insert(i, rr) ;
rr = rr * A % C ;
} //rr=A^M
LL jj,x,y;
for(int i=0;i<M;i++){
ex_gcd(D, C , x, y) ;
jj = find( (x * B % C+C)%C ) ; //printf("f %lld\n",r);
if(jj != -1){
return i*M+jj+d;
}
D = D * rr % C ;
}
return -1 ;
} -1无解 sqrt(p) =--------------------------------------- 普通版本 //POJ 2417
//baby_step giant_step
// a^x = b (mod n) n为素数,a,b < n
// 求解上式 0 <= x < n的解
#include <cmath>
#include <cstdio>
#include <cstring>
#define MOD 76543
using namespace std;
int hs[MOD], head[MOD], next[MOD], id[MOD], top;
void insert(int x, int y)
{
int k = x % MOD;
hs[top] = x;
id[top] = y;
next[top] = head[k];
head[k] = top++;
}
int find(int x)
{
int k = x % MOD;
for (int i = head[k]; i != -1; i = next[i])
if (hs[i] == x)
return id[i];
return -1;
}
int BSGS(int a, int b, int n)
{
memset(head, -1, sizeof(head));
top = 1;
if (b == 1)
return 0;
int m = sqrt(n * 1.0), j;
long long x = 1, p = 1;
for (int i = 0; i < m; i++, p = p * a % n)
insert(p * b % n, i);
for (long long i = m; ; i += m)
{
if ((j = find(x = x * p % n)) != -1)
return i - j;
if (i > n)
break;
}
return -1;
}
int main()
{
int a, b, n;
while (~scanf("%d%d%d", &n, &a, &b))
{
int ans = BSGS(a, b, n);
if (ans == -1)
printf("no solution\n");
else
printf("%d\n", ans);
}
}

BSGS 模板的更多相关文章

  1. Bsgs模板

    模板最主要的是自己看得舒服,不会给自己留隐患,调起来比较简单,板子有得是,最主要的是改造出适合你的那一套.                  ——mzz #include<bits/stdc++ ...

  2. bzoj2242,洛谷2485----SDOI2011计算器(exgcd,qsm,bsgs模板)

    就是一道模板题! 这里再强调一下 BSGS 考虑方程\(a^x = b \pmod p\) 已知a,b,p\((2 \le p\le 10^9)\),其中p为质数,求x的最小正整数解 解法: 注意到如 ...

  3. BSGS模板(慢速)

    //author Eterna #define Hello the_cruel_world! #pragma GCC optimize(2) #include<iostream> #inc ...

  4. bzoj 2242 [SDOI2011]计算器——BSGS模板

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2242 第一道BSGS! 咳咳,我到底改了些什么?…… 感觉和自己的第一版写的差不多……可能是 ...

  5. 【Luogu】P2485计算器(快速幂,exgcd和Bsgs模板)

    题目链接 题目描述非常直接,要求你用快速幂解决第一问,exgcd解决第二问,bsgs解决第三问. emmmm于是现学bsgs 第二问让求最小整数解好烦啊…… 假设我们要求得方程$ax+by=c(mod ...

  6. 2019牛客多校第五场C generator 2 hash,bsgs模板

    generator 2 题意 给出\(x_0,a,b,p\),有方程\(x_i\equiv (a*x_{i-1}+b)(\% p)\),求最小的i,使得\(x_i=v\),不存在输出-1 分析 经过公 ...

  7. U9249 【模板】BSGS

    题目描述 给定a,b,p,求最小的非负整数x 满足a^x≡b(mod p) 若无解 请输出“orz” 输入输出格式 输入格式: 三个整数,分别为a,b,p 输出格式: 满足条件的非负整数x 输入输出样 ...

  8. 【BSGS】BZOJ3239 Discrete Logging

    3239: Discrete Logging Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 729  Solved: 485[Submit][Statu ...

  9. BZOJ3239Discrete Logging——BSGS

    题目大意:给出$P,B,N$,求最小的正整数$L$,使$B^L\equiv N(mod\ P)$. $BSGS$模板题. #include<set> #include<map> ...

随机推荐

  1. 宋牧春: Linux设备树文件结构与解析深度分析(2) 【转】

    转自:https://mp.weixin.qq.com/s/WPZSElF3OQPMGqdoldm07A 作者简介 宋牧春,linux内核爱好者,喜欢阅读各种开源代码(uboot.linux.ucos ...

  2. 树莓派开发系列教程3--ssh、vnc远程访问

    注意:树莓派系列的3篇文章里面的图片因为博客转移过程丢失了,非常抱歉 前言 远程访问有很多种方式可以实现.比如ssh.telnet.ftp.samba.远程桌面等等,各有优缺点.本文主要以ssh和远程 ...

  3. linux中的计算【转】

    shell中的赋值和操作默认都是字符串处理,在此记下shell中进行数学运算的几个特殊方法,以后用到的时候可以来看,呵呵 1.错误方法举例 a) var=1+1 echo $var 输出的结果是1+1 ...

  4. c#操作pdf文件系列之创建文件

    1.我使用的工具是vs2013,引用的第三方程序集itextpdf 具体安装方法,可以通过nuget搜索iTextSharp然后进行安装. 2具体代码如下 创建两个不同pdf文件,每个地方什么意思代码 ...

  5. iOS 取消按钮高亮显示方法

    objective-C 第1种方法: 设置按钮的normal 与 highlighted 一样的图片, 不过如果你也需要selected状态下的图片, 就不能这么做, 这样做在取消选中状态的时候就会显 ...

  6. python 之ConfigParser模块学习

    1.1 读取配置文件 -read(filename) 直接读取ini文件内容 -sections() 得到所有的section,并以列表的形式返回 -options(section) 得到该secti ...

  7. Webmin忘记密码解决方法,及配置文件介绍

    Webmin忘记Web登陆时候的密码,无法登陆了,Google了一下,基本方法是通过changepass.pl可以修改密码 首先找到changepass.pl这个文件目录 $sudo locate c ...

  8. java并发编程实战笔记---(第五章)基础构建模块

    . 5.1同步容器类 1.同步容器类的问题 复合操作,加容器内置锁 2.迭代器与concurrentModificationException 迭代容器用iterator, 迭代过程中,如果有其他线程 ...

  9. google的面试题(三维动态规划的范例)——(87)Scramble String

    转:http://www.cnblogs.com/easonliu/p/3696135.html 分析:这个问题是google的面试题.由于一个字符串有很多种二叉表示法,貌似很难判断两个字符串是否可以 ...

  10. Next Permutation——简单、经典

    Implement next permutation, which rearranges numbers into the lexicographically next greater permuta ...