1042: [HAOI2008]硬币购物

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 3307  Solved: 2075
[Submit][Status][Discuss]

Description

  硬币购物一共有4种硬币。面值分别为c1,c2,c3,c4。某人去商店买东西,去了tot次。每次带di枚ci硬币,买s
i的价值的东西。请问每次有多少种付款方法。

Input

  第一行 c1,c2,c3,c4,tot 下面tot行 d1,d2,d3,d4,s,其中di,s<=100000,tot<=1000

Output

  每次的方法数

Sample Input

1 2 5 10 2
3 2 3 1 10
1000 2 2 2 900

Sample Output

4
27

HINT

 

Source

 

[Submit][Status][Discuss]

HOME Back

时隔多年(?)终于搞懂了第一道容斥题QwQ!!特此纪念。

首先我们可以做一次完全背包,每种硬币无限制地用,统计出方案数。然后我们就会发现多计入了一些不合法的情况,就是第$i$种硬币用了超出$d[i]$的数量的方案数。我们要统计所有不合法的情况,就是第一种硬币不合法的方案数+第二种硬币不合法的方案数+第三种硬币+第四种硬币-第一和第二-第二和第三...这就是奇加偶减的容斥!而我们是用所有情况减去不合法的情况,在$dfs$容斥中反过来就可以了。

【注意】$ans$最开始是0,因为在容斥中就会走到每一种硬币不合法的情况都不减去的情况,这时就是所有情况的总数。

代码中的$k$表示的就是当前减去了几个物品不合法的数量,奇加偶减。

$sum$是当前剩余需要填满的钱数,那么$f[sum-(d[i]+1)*c[i]]$表示的是第$i$种钱币用了$d[i]+1$填满$sum$的方案数,即这个硬币使用不合法的方案数。(强制使第$i$种硬币不合法

  1. #include<iostream>
  2. #include<cstdio>
  3. #define ll long long
  4. using namespace std;
  5.  
  6. int c[], tot, d[];
  7. ll ans, f[];
  8.  
  9. void dfs ( int dep, int k, int sum ) {
  10. if ( sum < ) return ;
  11. if ( dep == ) {
  12. if ( k & ) ans -= f[sum];
  13. else ans += f[sum];
  14. return ;
  15. }
  16. dfs ( dep + , k + , sum - ( d[dep] + ) * c[dep] );
  17. dfs ( dep + , k, sum );
  18. }
  19.  
  20. int main ( ) {
  21. for ( int i = ; i <= ; i ++ ) scanf ( "%d", &c[i] );
  22. scanf ( "%d", &tot );
  23. f[] = ;
  24. for ( int i = ; i <= ; i ++ )
  25. for ( int j = c[i]; j <= ; j ++ )
  26. f[j] += f[j-c[i]];
  27. while ( tot -- ) {
  28. for ( int i = ; i <= ; i ++ ) scanf ( "%d", &d[i] );
  29. int s;
  30. scanf ( "%d", &s );
  31. ans = ;
  32. dfs ( , , s );
  33. printf ( "%lld\n", ans );
  34. }
  35. return ;
  36. }

【BZOJ】1042: [HAOI2008]硬币购物的更多相关文章

  1. Bzoj 1042: [HAOI2008]硬币购物 容斥原理,动态规划,背包dp

    1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1747  Solved: 1015[Submit][Stat ...

  2. bzoj 1042: [HAOI2008]硬币购物 dp+容斥原理

    题目链接 1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1706  Solved: 985[Submit][ ...

  3. BZOJ 1042: [HAOI2008]硬币购物( 背包dp + 容斥原理 )

    先按完全背包做一次dp, dp(x)表示x元的东西有多少种方案, 然后再容斥一下. ---------------------------------------------------------- ...

  4. BZOJ 1042: [HAOI2008]硬币购物 [容斥原理]

    1042: [HAOI2008]硬币购物 题意:4种硬币.面值分别为c1,c2,c3,c4.1000次询问每种硬币di个,凑出\(s\le 10^5\)的方案数 完全背包方案数? 询问太多了 看了题解 ...

  5. BZOJ 1042: [HAOI2008]硬币购物 容斥+背包

    1042: [HAOI2008]硬币购物 Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请 ...

  6. BZOJ 1042 [HAOI2008]硬币购物(完全背包+容斥)

    题意: 4种硬币买价值为V的商品,每种硬币有numi个,问有多少种买法 1000次询问,numi<1e5 思路: 完全背包计算出没有numi限制下的买法, 然后答案为dp[V]-(s1+s2+s ...

  7. [BZOJ 1042] [HAOI2008] 硬币购物 【DP + 容斥】

    题目链接:BZOJ - 1042 题目分析 首先 Orz Hzwer ,代码题解都是看的他的 blog. 这道题首先使用DP预处理,先求出,在不考虑每种硬币个数的限制的情况下,每个钱数有多少种拼凑方案 ...

  8. BZOJ 1042: [HAOI2008]硬币购物 (详解)(背包&容斥原理)

    题面:https://www.cnblogs.com/fu3638/p/6759919.html 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚 ...

  9. BZOJ 1042: [HAOI2008]硬币购物 容斥原理_背包_好题

    Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买s i的价值的东西.请问每次有多少种付款方法. 题解: 十分喜 ...

  10. ●BZOJ 1042 [HAOI2008]硬币购物

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1042 题解: 容斥原理,dp预处理首先跑个无限物品的背包dp求出dp[i]表示在四种物品都有 ...

随机推荐

  1. vc 播放音乐

    #include <vfw.h>  #pragma comment(lib,"vfw32.lib")   ● 简单实现      要实现一个播放器,首先要先建立一个MF ...

  2. LCD常用接口原理【转】

    转自:http://blog.csdn.net/wocao1226/article/details/23870149 LCD常用接口原理 点击打开链接 点击打开链接 点击打开链接 点击打开链接 点击打 ...

  3. java处理金证中登查询图片二进制流问题

    package com.szkingdom.kess.model; import java.io.File; import java.io.FileOutputStream; import java. ...

  4. django 项目中的 favicon.ico 处理

    django 项目中的 favicon.ico 处理  (django == 2.0.6) 1. 引入模块: from django.views.generic.base import Redirec ...

  5. 转:google测试分享-测试经理

    原文: http://blog.sina.com.cn/s/blog_6cf812be0102vode.html 前言:这个系列分享的内容大部分都是出自于<google是如何测试的>的书, ...

  6. 8. Docker Machine

  7. HTTP协议头注射漏洞实例

    HTTP 响应头文件中包含未经验证的数据会引发 cache-poisoning.cross-site scripting.cross-user defacement.page hijacking.co ...

  8. 小技巧:tar命令打包目录时,排除文件和目录的命令

    今天不巧要用上,百度. tar zcvf fd.tar.gz pardir --exclude=pardir/file1 --exclude=pardir/dir1

  9. CentOS7.6使用flatpak安装软件

    1.安装flatpak(CentOS 7已默认安装Flatpak) yum -y install flatpak 2.添加Flathub仓库 flatpak remote-add --if-not-e ...

  10. Cordova - 禁用整个应用页面的上下拖动效果(防止拖动出现黑边)

    可在 config.xml 中进行如下设置:   <preference name="WebViewBounce" value="false" /> ...