[Compose] 15. Applicative Functors for multiple arguments
Working our way backwards from solution to problem, we define an applicative functor, then use it to apply a function of multiple arguments.
For example we have this line of code:
const res = Box(x => x +).ap(Box())// Box(3);
We want to use a funciton 'ap' (apply) on Box. And x will be 2.
To define 'ap' function.
const Box = x =>
({
chain: f => f(x),
ap: other => other.map(x),
map: f => Box(f(x)),
fold: f => f(x),
inspect: () => `Box(${x})`
})
So '
Box(x => x +1).ap(Box(2))
'
Can be translated to:
Box() => Box().map(x => x + );
This can be useful when apply curry function:
const res = Box(x => y => x + y).ap(Box()).ap(Box());
console.log(res.inspect()); //Box(3)
after apply .ap(Box(1)), it becomes to:
Box(y => 1 +y).ap(Box(2))
after apply .ap(Box(2)), it becomes to:
Box( + )
It ends up, we have a function and continue to using 'ap':
const add = x => y => x + y;
const res = Box(add).ap(Box()).ap(Box());
This partten is called click-functor!
The rule is:
F(val).map(fn) === F(fn).ap(F(val))
For example now we have:
const liftA2 = (fn, Fx, Fy) =>
F(fn).ap(Fx).ap(Fy);
The problem is we don't know what 'F' it is here...
So what we can do is transform accorind to the rule we have:
const liftA2 = (fn, Fx, Fy) =>
Fx.map(fn).ap(Fy)
Therefore we don't need to memtion any Functor.
Example:
const res2 = liftA2(add, Box(), Box());
console.log(res2.inspect()); //Box(3)
Applicate Functor is really good to work with Async functor, because async by natural, data arrives different time:
const add = x => y => z=> x + y + z;
const addAsyncNumbers = liftA3(add);
const res = addAsyncNumbers(
Async.of(),
Async((_, res) => {
setTimeout(() => {
console.log('resolve 2');
res()
}, )
}), Async((_, res) => {
setTimeout(() => {
console.log('resolve 3');
res()
}, )
}));
res.fork(e => console.error(e), x => console.log('async', x)) //
[Compose] 15. Applicative Functors for multiple arguments的更多相关文章
- [Compose] 17. List comprehensions with Applicative Functors
We annihilate the need for the ol' nested for loop using Applicatives. For example we have this kind ...
- [Functional Programming] Working with two functors(Applicative Functors)-- Part1 --.ap
What is applicative functor: the ability to apply functors to each other. For example we have tow fu ...
- [Functional Programming] Working with two functors(Applicative Functors)-- Part2 --liftAN
Let's examine a pointfree way to write these applicative calls. Since we know map is equal to of/ap, ...
- redux源码阅读之compose,applyMiddleware
我的观点是,看别人的源码,不追求一定要能原样造轮子,单纯就是学习知识,对于程序员的提高就足够了.在阅读redux的compose源码之前,我们先学一些前置的知识. redux源码阅读之compose, ...
- Redux源码分析之compose
Redux源码分析之基本概念 Redux源码分析之createStore Redux源码分析之bindActionCreators Redux源码分析之combineReducers Redux源码分 ...
- javac之Inferring Type Arguments Based on Actual Arguments
We use the following notational conventions in this section: Type expressions are represented using ...
- 小白日记15:kali渗透测试之弱点扫描-漏扫三招、漏洞管理、CVE、CVSS、NVD
发现漏洞 弱点发现方法: 1.基于端口服务扫描结果版本信息,比对其是否为最新版本,若不是则去其 官网查看其补丁列表,然后去逐个尝试,但是此法弊端很大,因为各种端口应用比较多,造成耗时大. 2.搜索已公 ...
- [转载] google mock cookbook
原文: https://code.google.com/p/googlemock/wiki/CookBook Creating Mock Classes Mocking Private or Prot ...
- 译:Spring框架参考文档之IoC容器(未完成)
6. IoC容器 6.1 Spring IoC容器和bean介绍 这一章节介绍了Spring框架的控制反转(IoC)实现的原理.IoC也被称作依赖注入(DI).It is a process wher ...
随机推荐
- 洛谷——P2071 座位安排 seat.cpp/c/pas
P2071 座位安排 seat.cpp/c/pas 题目背景 公元二零一四年四月十七日,小明参加了省赛,在一路上,他遇到了许多问题,请你帮他解决. 题目描述 已知车上有N排座位,有N*2个人参加省赛, ...
- JavaSE1
<The Pragmatic Programmer><The Mythical Man-month><Clean Code><The Clean Coder& ...
- FastReport.Net使用:[37]报表继承
1.设计一个基础报表,将其保存为BaseReport. 2.新建一个继承的报表. 通过 文件-->新建 打开“新建对象”向导.选择“继承的报表”,点击确定. 3. 在打开对话框中选择基础报表Ba ...
- CF400C/[思维题]
题目链接http://codeforces.com/problemset/problem/400/C 题意:给出一个(N,M)矩形和矩形里的p(p<=1e5)个点坐标,然后顺时针旋转x,镜面对称 ...
- 【51Nod 1238】最小公倍数之和 V3
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1238 设\(A(n)=\sum\limits_{i=1}^n\frac{ ...
- luogu P1919 【模板】A*B Problem升级版(FFT快速傅里叶)
模板 嗯 做多项式乘法,进位 没了 #include<cmath> #include<cstdio> #include<cstring> #include<a ...
- [BZOJ2402]陶陶的难题II(树链剖分+线段树维护凸包+分数规划)
陶陶的难题II 时间限制:40s 空间限制:128MB 题目描述 输入格式 第一行包含一个正整数N,表示树中结点的个数. 第二行包含N个正实数,第i个数表示xi (1<=xi<= ...
- python3-开发进阶Flask的基础(3)
上篇我们大概简单描述了一下上下文管理,这篇来具体来说说, 上下管理的request 上下管理的session 第三方组件:flask-session pymysql操作数据库 数据库连接池 一.前奏 ...
- 72.2801 LOL-盖伦的蹲草计划(广搜)
时间限制: 1 s 空间限制: 256000 KB 题目等级 : 黄金 Gold 题解 查看运行结果 题目描述 Description 众所周知,LOL这款伟大的游戏,有个叫盖伦的英雄.他的伟大之处在 ...
- HTML、XML、XHTML 有什么区别?
HTML即是超文本标记语言(Hyper Text Markup Language),是最早写网页的语言,但是由于时间早,规范不是很好,大小写混写且编码不规范,是语法较为松散的.不严格的Web语言 XH ...