Working our way backwards from solution to problem, we define an applicative functor, then use it to apply a function of multiple arguments.

For example we have this line of code:

const res = Box(x => x +).ap(Box())// Box(3);

We want to use a funciton 'ap' (apply) on Box. And x will be 2.

To define 'ap' function.

const Box = x =>
({
chain: f => f(x),
ap: other => other.map(x),
map: f => Box(f(x)),
fold: f => f(x),
inspect: () => `Box(${x})`
})

So '

Box(x => x +1).ap(Box(2))

'

Can be translated to:

Box() => Box().map(x => x + );

This can be useful when apply curry function:

const res = Box(x => y => x + y).ap(Box()).ap(Box());
console.log(res.inspect()); //Box(3)

after apply .ap(Box(1)), it becomes to:

Box(y => 1 +y).ap(Box(2))

after apply .ap(Box(2)), it becomes to:

Box( + )

It ends up, we have a function and continue to using 'ap':

const add = x => y => x + y;
const res = Box(add).ap(Box()).ap(Box());

This partten is called click-functor!

The rule is:

F(val).map(fn) === F(fn).ap(F(val))

For example now we have:

const liftA2 = (fn, Fx, Fy) =>
F(fn).ap(Fx).ap(Fy);

The problem is we don't know what 'F' it is here...

So what we can do is transform accorind to the rule we have:

const liftA2 = (fn, Fx, Fy) =>
Fx.map(fn).ap(Fy)

Therefore we don't need to memtion any Functor.

Example:

const res2 = liftA2(add, Box(), Box());
console.log(res2.inspect()); //Box(3)

Applicate Functor is really good to work with Async functor, because async by natural, data arrives different time:

const add = x => y => z=> x + y + z;
const addAsyncNumbers = liftA3(add);
const res = addAsyncNumbers(
Async.of(),
Async((_, res) => {
setTimeout(() => {
console.log('resolve 2');
res()
}, )
}), Async((_, res) => {
setTimeout(() => {
console.log('resolve 3');
res()
}, )
}));
res.fork(e => console.error(e), x => console.log('async', x)) //

[Compose] 15. Applicative Functors for multiple arguments的更多相关文章

  1. [Compose] 17. List comprehensions with Applicative Functors

    We annihilate the need for the ol' nested for loop using Applicatives. For example we have this kind ...

  2. [Functional Programming] Working with two functors(Applicative Functors)-- Part1 --.ap

    What is applicative functor: the ability to apply functors to each other. For example we have tow fu ...

  3. [Functional Programming] Working with two functors(Applicative Functors)-- Part2 --liftAN

    Let's examine a pointfree way to write these applicative calls. Since we know map is equal to of/ap, ...

  4. redux源码阅读之compose,applyMiddleware

    我的观点是,看别人的源码,不追求一定要能原样造轮子,单纯就是学习知识,对于程序员的提高就足够了.在阅读redux的compose源码之前,我们先学一些前置的知识. redux源码阅读之compose, ...

  5. Redux源码分析之compose

    Redux源码分析之基本概念 Redux源码分析之createStore Redux源码分析之bindActionCreators Redux源码分析之combineReducers Redux源码分 ...

  6. javac之Inferring Type Arguments Based on Actual Arguments

    We use the following notational conventions in this section: Type expressions are represented using ...

  7. 小白日记15:kali渗透测试之弱点扫描-漏扫三招、漏洞管理、CVE、CVSS、NVD

    发现漏洞 弱点发现方法: 1.基于端口服务扫描结果版本信息,比对其是否为最新版本,若不是则去其 官网查看其补丁列表,然后去逐个尝试,但是此法弊端很大,因为各种端口应用比较多,造成耗时大. 2.搜索已公 ...

  8. [转载] google mock cookbook

    原文: https://code.google.com/p/googlemock/wiki/CookBook Creating Mock Classes Mocking Private or Prot ...

  9. 译:Spring框架参考文档之IoC容器(未完成)

    6. IoC容器 6.1 Spring IoC容器和bean介绍 这一章节介绍了Spring框架的控制反转(IoC)实现的原理.IoC也被称作依赖注入(DI).It is a process wher ...

随机推荐

  1. 洛谷——P2071 座位安排 seat.cpp/c/pas

    P2071 座位安排 seat.cpp/c/pas 题目背景 公元二零一四年四月十七日,小明参加了省赛,在一路上,他遇到了许多问题,请你帮他解决. 题目描述 已知车上有N排座位,有N*2个人参加省赛, ...

  2. JavaSE1

    <The Pragmatic Programmer><The Mythical Man-month><Clean Code><The Clean Coder& ...

  3. FastReport.Net使用:[37]报表继承

    1.设计一个基础报表,将其保存为BaseReport. 2.新建一个继承的报表. 通过 文件-->新建 打开“新建对象”向导.选择“继承的报表”,点击确定. 3. 在打开对话框中选择基础报表Ba ...

  4. CF400C/[思维题]

    题目链接http://codeforces.com/problemset/problem/400/C 题意:给出一个(N,M)矩形和矩形里的p(p<=1e5)个点坐标,然后顺时针旋转x,镜面对称 ...

  5. 【51Nod 1238】最小公倍数之和 V3

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1238 设\(A(n)=\sum\limits_{i=1}^n\frac{ ...

  6. luogu P1919 【模板】A*B Problem升级版(FFT快速傅里叶)

    模板 嗯 做多项式乘法,进位 没了 #include<cmath> #include<cstdio> #include<cstring> #include<a ...

  7. [BZOJ2402]陶陶的难题II(树链剖分+线段树维护凸包+分数规划)

    陶陶的难题II 时间限制:40s      空间限制:128MB 题目描述 输入格式 第一行包含一个正整数N,表示树中结点的个数. 第二行包含N个正实数,第i个数表示xi (1<=xi<= ...

  8. python3-开发进阶Flask的基础(3)

    上篇我们大概简单描述了一下上下文管理,这篇来具体来说说, 上下管理的request 上下管理的session 第三方组件:flask-session pymysql操作数据库  数据库连接池 一.前奏 ...

  9. 72.2801 LOL-盖伦的蹲草计划(广搜)

    时间限制: 1 s 空间限制: 256000 KB 题目等级 : 黄金 Gold 题解 查看运行结果 题目描述 Description 众所周知,LOL这款伟大的游戏,有个叫盖伦的英雄.他的伟大之处在 ...

  10. HTML、XML、XHTML 有什么区别?

    HTML即是超文本标记语言(Hyper Text Markup Language),是最早写网页的语言,但是由于时间早,规范不是很好,大小写混写且编码不规范,是语法较为松散的.不严格的Web语言 XH ...