Spatial Transformer Network
https://blog.csdn.net/yaoqi_isee/article/details/72784881
Abstract:
作者说明了CNN对于输入的数据缺乏空间变换不变形(lack of spatially invariant ability to input data),因此作者引入了一个spatial transformer module,不需要额外的监督,能够以data-driven的方式学习得到输入图像的空间变换参数,赋予网络spatial invariant能力。
Introduction:
普通的神经网络通过max-pooling实现了一定程度上的translation invariance,但是这种不变形是通过网络的max-pooling层的堆叠实现的,对于网络内部的feature map来说,输入的图像如果进行了大范围的(平移)变换,feature map还是无法做到invariance(因为每一个max-pooling就只是2x2大小的模块,只能保证在2x2大小范围内的微小的变换,输出是不变的,通过堆叠这些2x2的池化单元,才能实现对大尺度平移变换的不变性)。
这篇文章中,作者提出了一个spatial transformer module(记为ST模块),这个模块对于任意输入的图像或者feature map,产生一个对应的spatial transform的参数,然后根据这个参数将原来的图像或者feature map做一个全局(而非局部)的空间变换,得到最终的canonical pose(也就是正正方方的图,比如原来物体是斜的,通过ST模块之后变成正的了)。
Spatial Transformer:
ST模块可以分成三个部分:localization network根据输入的feature map回归spatial transform的参数 θθ,然后用这个参数去生成一个采样的grid,最后根据这个grid以及输入的feature map得到输出的经过空间变换的feature map,如下图所示
Localization network
localization的网络输入一张feature map U∈RH×W×CU∈RH×W×C,输出 θ=floc(U)θ=floc(U), θθ 的size取决于我们预先定义的空间变换的类型,比如仿射变换的话,大小就是6维。
Parameterized Sampling Grid
有了空间变换的参数之后,我们就可以知道输出的feature map上的每一个点在输入的feature map上的位置了。比如说对于二维的仿射变换,我们可以建立输出feature map上的坐标和输入feature map上坐标之间的映射关系:
其中 (xti,yti)(xit,yit) 表示输出的feature map上的坐标,(xsi,ysi)(xis,yis) 表示输出feature map上坐标对应在输入feature map上的采样点坐标。
当我们把上面的参数特殊化之后,其实就可以model其他的变换,比如attention,crop,translation,以attention为例,参数为
Differentiable Image Sampling
知道了输出feature map在输入feature map上的采样点坐标之后,接下来就是要根据采样点的值确定输出目标点的值了。这里一般会用到kernel,以采样点为中心的kernel范围内的点对输出目标点的值都有贡献。
上式中,V表示输出特征图,i表示特征图的下标,c表示第c个channel,所有的空间变换对于各个channel都是一样的。H′,W′H′,W′ 表示输出的特征图的长宽。U表示输入的特征图,k表示预定义的kernel,xsi,ysixis,yis 表示采样点坐标,ΦΦ 表示kernel的参数。
一般常用的kernel为双线性插值kernel(根据输出feature map上规律的坐标值计算输入的feature map上采样点的坐标通常得到的坐标值是小数,所以可以用双线性插值计算采样点处的feature值),这个时候,上式就退化成
求导的话也很方便
根据采样点的坐标值可以继续对参数 θθ 求导,从而更新localization网络的参数。
Experiment
1.Distorted MNIST
作者首先在Distorted MNIST数据集上进行实验,主要存在以下几种空间变换:R(旋转)、RTS(旋转平移尺度变换)、P(投影变换)、E(弹性变换)
作者设置了两个baseline:fully-connected NN(FCN)以及convolutional NN(CNN)。
实验组加入了ST模块,分别是Aff(仿射变换)、Proj(投影变换)以及TPS(plate spline transformation)
实验结果如下所示:
表格中的数字表示不同的模型在不同的distorted mnist数据集上的错误率。可以看到加了ST模块的模型相比没有加ST的对照模型,错误率降低了。
右图中第一栏表示输入的distorted的图像,(b)栏表示根据 θθ 得到的sampling grid,(c)栏表示spatial transformer的输出。
3.Fine-Grained Classification
通过在一个网络里面加入多个ST模块,可以提高网络model各种空间变换的能力。作者在CUB数据集(the birds appear at a range of scales and orientations, are not tightly cropped)上进行了实验。
作者以state-of-art作为baseline
作者自己的网络采用了2个或者4个ST模块,模型如下图所示,ST模块用的是attention机制的:
通过locoliation网络预测两个 θθ,然后根据这两个 θθ 得到两个sampling的结果,分别取提取特征做分类。
上图表示CUB上的结果。可以看到2ST-CNN中一个集中在头部一个集中在身体。
---------------------
本文来自 yj_isee 的CSDN 博客 ,全文地址请点击:https://blog.csdn.net/yaoqi_isee/article/details/72784881?utm_source=copy
Spatial Transformer Network的更多相关文章
- stn,spatial transformer network总结
对整篇paper的一个总结:https://blog.csdn.net/xbinworld/article/details/69049680 github:1.https://github.com/D ...
- Spatial Transformer Networks(空间变换神经网络)
Reference:Spatial Transformer Networks [Google.DeepMind]Reference:[Theano源码,基于Lasagne] 闲扯:大数据不如小数据 这 ...
- spatial transformer networks 这篇论文
大致看了看这个paper, 很novel. 我的观点: 在traditional convolutional neural netwoks 中,我们通常会depend 于 extracting fea ...
- 深度学习方法(十二):卷积神经网络结构变化——Spatial Transformer Networks
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.机器学习技术感兴趣的同学加入. 今天具体介绍一个Google ...
- STN(Spatial Transformer Networks)
url: https://arxiv.org/abs/1506.02025 year:2015 blog: https://kevinzakka.github.io/2017/01/10/stn-pa ...
- [论文理解] Spatial Transformer Networks
Spatial Transformer Networks 简介 本文提出了能够学习feature仿射变换的一种结构,并且该结构不需要给其他额外的监督信息,网络自己就能学习到对预测结果有用的仿射变换.因 ...
- 论文笔记之:Optical Flow Estimation using a Spatial Pyramid Network
Optical Flow Estimation using a Spatial Pyramid Network spynet 本文将经典的 spatial-pyramid formulation ...
- 论文笔记:空间变换网络(Spatial Transformer Networks)
2015, NIPS Max Jaderberg, Karen Simonyan, Andrew Zisserman, Koray Kavukcuoglu Google DeepMind 为什么提出( ...
- (转载)理解Spatial Transformer Networks
理解Spatial Transformer Networks 转载于:知乎-SIGAI 书的购买链接 书的勘误,优化,源代码资源 获取全文PDF请查看:理解Spatial Transformer Ne ...
随机推荐
- 【ASP】Window2008站点安全设置,IIS7/IIS7.5中目录执行权限的设置方法
最近帮一个朋友管理Window 2008服务器,发现有个站点是用asp写的,更可怕的是还有传说中的“上传漏洞”,在上传文件夹中有好多的可执行的asp.php文件,算是shell后门脚本吧.怎么处理这个 ...
- directio mysql 编绎选项
http://www.myexception.cn/linux-unix/495407.html http://www.iyunv.com/thread-25950-1-1.html
- Gulp插件less的使用
1.创建:gulpfile.js var gulp = require('gulp'), less = require('gulp-less'); gulp.task('default', funct ...
- weblogic清理缓存后重启
清理缓存步骤如下: 1.前置条件:停止服务 2.找到下面3个目录,然后将里面的文件删除即可: ……/user_projects/domains/base_domain/servers/AdminSer ...
- MFC DLL对话框调用
Regular Dll using shared MFC DLL extern "C" __declspec(dllexport) void Show() { AFX_MANA ...
- TeX系列: MATLAB和LaTeX结合绘图
目的是在MATLAB中绘图,在LaTeX中利用PGFPlots实现对图的修饰,比如坐标系.坐标轴标记.标题等等.这样能够保证图的中标记与正文文本的一致性,同时又可利用MATLAB强大的数据处理和丰富的 ...
- OpenCV学习(3) OpenCV框架
OpenCV是一个开源的视觉库,其中包括很多计算机视觉的算法实现.在版本2.2以后,OpenCV采用C++特征的API,在1.x版本中,OpenCV函数都是传统的C语言形式. ...
- Javascript前端思维导图
思维导图小tips: 思维导图又叫心智图,是表达发射性思维的有效的图形思维工具 ,它简单却又极其有效,是一种革命性的思维工具.思维导图运用图文并重的技巧,把各级主题的关系用相互隶属与相关的层级图表现出 ...
- 【云计算】使用privilege权限对Docker内核参数进行定制
探讨Docker容器中修改系统变量的方法 探讨完Docker对共享内存状态持久化的支持状况后,我将遗留产品build到一个pre-production image中,测试启动是否OK.很显然,我过于乐 ...
- Kettle中txt类型数据源作为输入需要注意的地方
文本类型在kettle中作为数据源的时候,需要注意的几点,ktr的机构如下图 1:txt文本的格式 2:文本输入控件的设置 --2.1:选择文件所在物理位置 --2.2:设置分隔符,注意头部数量去掉, ...