【BZOJ】2134: 单选错位 期望DP
【题意】有n道题,第i道题有ai个选项。把第i道题的正确答案填到第i+1道题上(n填到1),问期望做对几道题。n<=10^7。
【算法】期望DP
【题解】正确答案的随机分布不受某道题填到后面是否正确影响,因此每道题对的期望都是独立的。
从排列的角度分析,对每道题有a[i-1]个选择和a[i]个选项,共a[i-1]*a[i]种排列,其中只有min(a[i-1],ai)种排列使这道题正确,所以
$$E(i)=\frac{Min(a[i-1],a[i])}{a[i-1]*a[i]}=\frac{1}{Max(a[i-1],a[i])}$$
然后根据期望的线性相加。
复杂度O(n)。
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=;
int n,a[maxn];
int main()
{
int A,B,C;
scanf("%d%d%d%d%d",&n,&A,&B,&C,&a[]);
for (int i=;i<=n;i++) a[i] = ((long long)a[i-] * A + B) % ;
for (int i=;i<=n;i++) a[i] = a[i] % C + ;
a[]=a[n];
double ans=;
for(int i=;i<=n;i++)ans+=1.0/max(a[i],a[i-]);
printf("%.3lf",ans);
return ;
}
如果实在纠结前面题对和后面题对有一题重合,考虑期望可以线性相加,所以实际上是可以拆出来计算的。
【BZOJ】2134: 单选错位 期望DP的更多相关文章
- BZOJ 2134 单选错位 ——期望DP
发现概率是∑1/两道题答案相同的概率, 稍加化简 #include <map> #include <ctime> #include <cmath> #include ...
- BZOJ 2134: 单选错位( 期望 )
第i个填到第i+1个的期望得分显然是1/max(a[i],a[i+1]).根据期望的线性性, 我们只需将每个选项的期望值累加即可. ---------------------------------- ...
- BZOJ_2134_单选错位——期望DP
BZOJ_2134_单选错位——期望DP 题意: 分析:设A为Ai ∈ [1,ai+1] 的概率,B为Ai = A(imodn+1)的概率显然P(A|B) = 1,那么根据贝叶斯定理P(B) = P( ...
- bzoj 2134 单选错位(期望)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2134 [题意] ai与ai+1相等得1分,求期望. [思路] 每个题的期望都是独立的. ...
- BZOJ——2134: 单选错位
http://www.lydsy.com/JudgeOnline/problem.php?id=2134 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: ...
- 【刷题】BZOJ 2134 单选错位
Description Input n很大,为了避免读入耗时太多, 输入文件只有5个整数参数n, A, B, C, a1, 由上交的程序产生数列a. 下面给出pascal/C/C++的读入语句和产生序 ...
- [ BZOJ 2134 ] 单选错位
\(\\\) \(Description\) 一共\(N\)道题目,第\(i\)道题有\(A_i\)个选项,现在有一个人做完了所有题目,但将每一道题的答案都写到了下一道题的位置\((\)第\( ...
- Bzoj 2134: [国家集训队2011]单选错位(期望)
2134: 单选错位 Time Limit: 10 Sec Memory Limit: 259 MB Description Input n很大,为了避免读入耗时太多,输入文件只有5个整数参数n, A ...
- 【BZOJ】4318: OSU! 期望DP
[题意]有一个长度为n的01序列,每一段极大的连续1的价值是L^3(长度L).现在给定n个实数表示该位为1的概率,求期望总价值.n<=10^5. [算法]期望DP [题解]后缀长度是一个很关键的 ...
随机推荐
- js实现轮播功能
先上图,效果大概就是这样子: 实现的功能: 1.鼠标经过第几个正方形,就要展示第几张图片,并且正方形的颜色也发生变化 2.图片自动轮播,(这需要一个定时器) 3.鼠标经过图片,图片停止自动播放(这需要 ...
- php中扩展pecl与pear
要为大家分享的内容是PECL 和 PEAR 他们之间的不同和相同之处. PEAR 是“PHP Extension and Application Repository”的缩写,即PHP扩展和应用仓库. ...
- 一次性无重复配置VS项目插件属性的方法
在VS中需要使用opencv开源库或mysql等数据库时,为了能使用开源库或数据库的语言,需要添加库文件和包含目录等等.然而直接在[解决方案管理器]-->属性中配置的话,写下一个项目(解决方案) ...
- 第147天:web前端开发中的各种居中总结
一.水平居中 方法① :行内元素 (父元素)text-align,(子元素)inline-block .parent{text-align: center;} .child{display: inli ...
- bzoj2301-Problem b
题意 \(T\le 5\times 10^4\) 次询问,每次询问 \(a,b,c,d,k\le 5\times 10^4\),求 \[ \sum _{i=a}^b\sum _{j=c}^d[gcd( ...
- 给定一个字符串 s,找到 s 中最长的回文子串。你可以假设 s 的最大长度为1000。
给定一个字符串 s,找到 s 中最长的回文子串.你可以假设 s 的最大长度为1000. 示例 1: 输入: "babad" 输出: "bab" 注意: &quo ...
- DAVY的神龙帕夫——读者的心灵故事|十二橄榄枝的传说
再次听Puff的时候我想起了Davy. 文理分班后我坐到了他后面.Davy天生一头黄毛,黑头发”not even one”.上课时他若不是肆无忌惮地舒开四肢呼呼大睡,便是如受惊一般伸长他的细脖子,直挺 ...
- java学习2-webserver测试工具soapUI使用
file-->new soap project-->输入project Name(随便)输入 WSDL地址,其他默认,点ok展开左侧加载的项目下的方法名,双击Request ,右侧出现测试 ...
- BZOJ3530:[SDOI2014]数数——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=3530 我们称一个正整数N是幸运数,当且仅当它的十进制表示中不包含数字串集合S中任意一个元素作为其子 ...
- 20135239 益西拉姆 linux内核分析 使用库函数API和C代码中嵌入汇编代码两种方式使用同一个系统调用
https://drive.wps.cn/preview#l/759e32d65654419cb765da932cdf5cdc 本次直接在wps上写的,因为不能连同图片一起粘贴过来,一个一个粘比较费时 ...