【BZOJ】2134: 单选错位 期望DP
【题意】有n道题,第i道题有ai个选项。把第i道题的正确答案填到第i+1道题上(n填到1),问期望做对几道题。n<=10^7。
【算法】期望DP
【题解】正确答案的随机分布不受某道题填到后面是否正确影响,因此每道题对的期望都是独立的。
从排列的角度分析,对每道题有a[i-1]个选择和a[i]个选项,共a[i-1]*a[i]种排列,其中只有min(a[i-1],ai)种排列使这道题正确,所以
$$E(i)=\frac{Min(a[i-1],a[i])}{a[i-1]*a[i]}=\frac{1}{Max(a[i-1],a[i])}$$
然后根据期望的线性相加。
复杂度O(n)。
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=;
int n,a[maxn];
int main()
{
int A,B,C;
scanf("%d%d%d%d%d",&n,&A,&B,&C,&a[]);
for (int i=;i<=n;i++) a[i] = ((long long)a[i-] * A + B) % ;
for (int i=;i<=n;i++) a[i] = a[i] % C + ;
a[]=a[n];
double ans=;
for(int i=;i<=n;i++)ans+=1.0/max(a[i],a[i-]);
printf("%.3lf",ans);
return ;
}
如果实在纠结前面题对和后面题对有一题重合,考虑期望可以线性相加,所以实际上是可以拆出来计算的。
【BZOJ】2134: 单选错位 期望DP的更多相关文章
- BZOJ 2134 单选错位 ——期望DP
发现概率是∑1/两道题答案相同的概率, 稍加化简 #include <map> #include <ctime> #include <cmath> #include ...
- BZOJ 2134: 单选错位( 期望 )
第i个填到第i+1个的期望得分显然是1/max(a[i],a[i+1]).根据期望的线性性, 我们只需将每个选项的期望值累加即可. ---------------------------------- ...
- BZOJ_2134_单选错位——期望DP
BZOJ_2134_单选错位——期望DP 题意: 分析:设A为Ai ∈ [1,ai+1] 的概率,B为Ai = A(imodn+1)的概率显然P(A|B) = 1,那么根据贝叶斯定理P(B) = P( ...
- bzoj 2134 单选错位(期望)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2134 [题意] ai与ai+1相等得1分,求期望. [思路] 每个题的期望都是独立的. ...
- BZOJ——2134: 单选错位
http://www.lydsy.com/JudgeOnline/problem.php?id=2134 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: ...
- 【刷题】BZOJ 2134 单选错位
Description Input n很大,为了避免读入耗时太多, 输入文件只有5个整数参数n, A, B, C, a1, 由上交的程序产生数列a. 下面给出pascal/C/C++的读入语句和产生序 ...
- [ BZOJ 2134 ] 单选错位
\(\\\) \(Description\) 一共\(N\)道题目,第\(i\)道题有\(A_i\)个选项,现在有一个人做完了所有题目,但将每一道题的答案都写到了下一道题的位置\((\)第\( ...
- Bzoj 2134: [国家集训队2011]单选错位(期望)
2134: 单选错位 Time Limit: 10 Sec Memory Limit: 259 MB Description Input n很大,为了避免读入耗时太多,输入文件只有5个整数参数n, A ...
- 【BZOJ】4318: OSU! 期望DP
[题意]有一个长度为n的01序列,每一段极大的连续1的价值是L^3(长度L).现在给定n个实数表示该位为1的概率,求期望总价值.n<=10^5. [算法]期望DP [题解]后缀长度是一个很关键的 ...
随机推荐
- linux 上传下载
xshell yum就是傻瓜式的安装软件,你要装什么,yum什么就行了,红帽系统才有yum,乌班图和debian是没有的 输入命令:sudo yum -y install lrzsz rz 上传 从 ...
- ZOJ3513_Human or Pig
这个题太坑爹了,题意也好纠结. 是这样的,给你一个n*m的矩形,中间有n*m个1*1的格子,有不同的跳跃方法.如果当前为human(人类)那么他可以有意识的选择自己下一步跳往何方:如果当前为pig(猪 ...
- BZOJ 4034 树上操作(树的欧拉序列+线段树)
刷个清新的数据结构题爽一爽? 题意: 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x ...
- 【Jmeter】集合点Synchronizing Timer
集合点: 简单来理解一下,虽然我们的“性能测试”理解为“多用户并发测试”,但真正的并发是不存在的,为了更真实的实现并发这感念,我们可以在需要压力的地方设置集合点,每到输入用户名和密码登录时,所有的虚拟 ...
- "流量监管"和"流量整形"的区别
"流量监管" (Traffic Policing) 就是对流量进行控制,通过监督进入交换机端口的流量速率,对超出部分的流量进行"惩罚" (采用监管方式时是直接丢 ...
- Educational Codeforces Round 33 (Rated for Div. 2) 题解
A.每个状态只有一种后续转移,判断每次转移是否都合法即可. #include <iostream> #include <cstdio> using namespace std; ...
- 高rong效chang的可持久化treap
很多人觉得可持久化treap很慢,但是事实上只是他们可持久化treap的写法不对.他们一般是用split和merge实现所有功能,但是这样会有许多不必要的分裂.其实我们可以用一种特殊的方式来实现插入和 ...
- Toast与Snackbar的那点事
背景 Toast是Android平台上的常用技术.从用户角度来看,Toast是用户与App交互最基本的提示控件:从开发者角度来看,Toast是开发过程中常用的调试手段之一.此外,Toast语法也非常简 ...
- 洛谷 P3648 [APIO2014]序列分割 解题报告
P3648 [APIO2014]序列分割 题目描述 你正在玩一个关于长度为\(n\)的非负整数序列的游戏.这个游戏中你需要把序列分成\(k+1\)个非空的块.为了得到\(k+1\)块,你需要重复下面的 ...
- 解题:POI 2007 Weights
题面 这是个$O(nlog^2$ $n)$的解法,因为蒟蒻博主没有看懂$O(nlog$ $n)$的更优秀的解法 显然从小到大装砝码是最优的方法,又显然从大到小装容器不会使得答案变劣,还显然砝码数具有单 ...