题目链接

一开始我的\(dp\)方程列错了,其实也不能说列错了,毕竟我交上去还是把暴力的分都拿到了,只是和题解的不一样,然后搞半天没搞出来去看题解,又看不懂,对不上,原来状态设置不一样自闭了。

\(f[i]=all-sum[j]*dis[j]-(sum[i]-sum[j])*dis[i]\)

\(f[i]=all-sum[j]*dis[j]-sum[i]*dis[i]+sum[j]*dis[i]\)

\(sum[j]*dis[j]=dis[i]*sum[j]-sum[i]*dis[i]+all-f[i]\)

#include <cstdio>
const int MAXN = 20010;
#define ll long long
inline ll min(const ll a, const ll b){
return a < b ? a : b;
}
int n;
ll all, ans = 1e17, sum[MAXN], dis[MAXN];
int w[MAXN], d[MAXN];
int q[MAXN], head, tail;
inline double k(int i, int j){
return ((double)sum[i] * dis[i] - sum[j] * dis[j]) / (sum[i] - sum[j]);
}
int main(){
scanf("%d", &n);
for(int i = 1; i <= n; ++i)
scanf("%d%d", &w[i], &d[i]);
for(int i = n; i; --i)
all += w[i] * (dis[i] = dis[i + 1] + d[i]);
for(int i = 1; i <= n; ++i)
sum[i] = sum[i - 1] + w[i];
for(int i = 1; i <= n; ++i){
while(head < tail && k(q[head], q[head + 1]) > dis[i]) ++head;
int j = q[head];
ans = min(ans, all - sum[j] * dis[j] - (sum[i] - sum[j]) * dis[i]);
while(head < tail && k(q[tail - 1], q[tail]) <= k(q[tail], i)) --tail;
q[++tail] = i;
}
printf("%lld\n", ans);
return 0;
}

【洛谷 P4360】 [CEOI2004]锯木厂选址(斜率优化)的更多相关文章

  1. 2018.08.28 洛谷P4360 [CEOI2004]锯木厂选址(斜率优化dp)

    传送门 一道斜率优化dp入门题. 是这样的没错... 我们用dis[i]表示i到第三个锯木厂的距离,sum[i]表示前i棵树的总重量,w[i]为第i棵树的重量,于是发现如果令第一个锯木厂地址为i,第二 ...

  2. 洛谷P4360 [CEOI2004]锯木厂选址(斜率优化)

    传送门 我可能根本就没有学过斜率优化…… 我们设$dis[i]$表示第$i$棵树到山脚的距离,$sum[i]$表示$w$的前缀和,$tot$表示所有树运到山脚所需要的花费,$dp[i]$表示将第二个锯 ...

  3. 洛谷P4360 [CEOI2004]锯木厂选址(dp 斜率优化)

    题意 题目链接 Sol 枚举第二个球放的位置,用前缀和推一波之后发现可以斜率优化 // luogu-judger-enable-o2 #include<bits/stdc++.h> #de ...

  4. 洛谷4360[CEOI2004]锯木厂选址 (斜率优化+dp)

    qwq 我感觉这都已经不算是斜率优化\(dp\)了,感觉更像是qwq一个\(下凸壳优化\)转移递推式子. qwq 首先我们先定义几个数组 \(sw[i]\)表示\(w[i]\)的前缀和 \(val[i ...

  5. [CEOI2004]锯木厂选址 斜率优化DP

    斜率优化DP 先考虑朴素DP方程, f[i][k]代表第k个厂建在i棵树那里的最小代价,最后答案为f[n+1][3]; f[i][k]=min(f[j][k-1] + 把j+1~i的树都运到i的代价) ...

  6. P4360 [CEOI2004]锯木厂选址

    P4360 [CEOI2004]锯木厂选址 这™连dp都不是 \(f_i\)表示第二个锯木厂设在\(i\)的最小代价 枚举1号锯木厂 \(f_i=min_{0<=j<i}(\sum_{i= ...

  7. luogu P4360 [CEOI2004]锯木厂选址

    斜率优化dp板子题[迫真] 这里从下往上标记\(1-n\)号点 记\(a_i\)表示前缀\(i\)里面树木的总重量,\(l_i\)表示\(i\)到最下面的距离,\(s_i\)表示\(1\)到\(i-1 ...

  8. luoguP4360 [CEOI2004]锯木厂选址

    题目链接 luoguP4360 [CEOI2004]锯木厂选址 题解 dis:后缀和 sum:前缀和 补集转化,减去少走的,得到转移方程 dp[i] = min(tot - sumj * disj - ...

  9. 动态规划(斜率优化):[CEOI2004]锯木厂选址

    锯木场选址(CEOI2004) 从山顶上到山底下沿着一条直线种植了n棵老树.当地的政府决定把他们砍下来.为了不浪费任何一棵木材,树被砍倒后要运送到锯木厂. 木材只能按照一个方向运输:朝山下运.山脚下有 ...

  10. [BZOJ2684][CEOI2004]锯木厂选址

    BZOJ权限题! Description 从山顶上到山底下沿着一条直线种植了n棵老树.当地的政府决定把他们砍下来.为了不浪费任何一棵木材,树被砍倒后要运送到锯木厂. 木材只能按照一个方向运输:朝山下运 ...

随机推荐

  1. 1029C语言文法的理解

    <程序>→<外部声明>|<程序><外部声明> <外部声明>→<函数定义>|<声明> <函数定义>→< ...

  2. ios 中不new Date 的格式 不支持年月日 以‘-’ 分割的格式

    new Date("2018-1-5") 在 ios 中显示 invalid date - 换做 / 则可以顺利显示 new Date("2018/1/5")

  3. 详解免费高效实用的.NET操作Excel组件NPOI(转)

    有时间研究一下NPOI http://www.cnblogs.com/pengze0902/p/6150070.html

  4. 【.Net+数据库】sqlserver的四种分页方式

    第一种:ROW_NUMBER() OVER()方式 select * from (  select *, ROW_NUMBER() OVER(Order by ArtistId ) AS RowId ...

  5. js控制iframe高度自动撑开

    <iframe src="index.html" width="100%" name="" id="myiframe&quo ...

  6. 【Python】Python的time和datetime模块

    time 常用的有time.time()和time.sleep()函数. import time print(time.time()) 1499305554.3239055 上面的浮点数称为UNIX纪 ...

  7. bzoj4032-最短不公共子串

    题意 给出两个长度小于等于2000的小写字母串,四个问题: A的最短子串不是B的子串 A的最短子串不是B的子序列 A的最短子序列不是B的子串 A的最短子序列不是B的子序列 分析 虽然求的是不公共,但是 ...

  8. 使用android资源

    1.我们可以命名的资源种类有多少? 答: res/anim/ XML文件,它们被编译进逐帧动画(frame by frame animation)或补间动画(tweened animation)对象 ...

  9. DP——P2300 合并神犇

    题目背景 loidc来到了NOI的赛场上,他在那里看到了好多神犇. 题目描述 神犇们现在正排成一排在刷题.每个神犇都有一个能力值p[i].loidc认为坐在附近的金牌爷能力参差不齐非常难受.于是loi ...

  10. Debugging QML Applications

    Debugging QML Applications Console API Log console.log, console.debug, console.info, console.warn an ...