题目链接

一开始我的\(dp\)方程列错了,其实也不能说列错了,毕竟我交上去还是把暴力的分都拿到了,只是和题解的不一样,然后搞半天没搞出来去看题解,又看不懂,对不上,原来状态设置不一样自闭了。

\(f[i]=all-sum[j]*dis[j]-(sum[i]-sum[j])*dis[i]\)

\(f[i]=all-sum[j]*dis[j]-sum[i]*dis[i]+sum[j]*dis[i]\)

\(sum[j]*dis[j]=dis[i]*sum[j]-sum[i]*dis[i]+all-f[i]\)

#include <cstdio>
const int MAXN = 20010;
#define ll long long
inline ll min(const ll a, const ll b){
return a < b ? a : b;
}
int n;
ll all, ans = 1e17, sum[MAXN], dis[MAXN];
int w[MAXN], d[MAXN];
int q[MAXN], head, tail;
inline double k(int i, int j){
return ((double)sum[i] * dis[i] - sum[j] * dis[j]) / (sum[i] - sum[j]);
}
int main(){
scanf("%d", &n);
for(int i = 1; i <= n; ++i)
scanf("%d%d", &w[i], &d[i]);
for(int i = n; i; --i)
all += w[i] * (dis[i] = dis[i + 1] + d[i]);
for(int i = 1; i <= n; ++i)
sum[i] = sum[i - 1] + w[i];
for(int i = 1; i <= n; ++i){
while(head < tail && k(q[head], q[head + 1]) > dis[i]) ++head;
int j = q[head];
ans = min(ans, all - sum[j] * dis[j] - (sum[i] - sum[j]) * dis[i]);
while(head < tail && k(q[tail - 1], q[tail]) <= k(q[tail], i)) --tail;
q[++tail] = i;
}
printf("%lld\n", ans);
return 0;
}

【洛谷 P4360】 [CEOI2004]锯木厂选址(斜率优化)的更多相关文章

  1. 2018.08.28 洛谷P4360 [CEOI2004]锯木厂选址(斜率优化dp)

    传送门 一道斜率优化dp入门题. 是这样的没错... 我们用dis[i]表示i到第三个锯木厂的距离,sum[i]表示前i棵树的总重量,w[i]为第i棵树的重量,于是发现如果令第一个锯木厂地址为i,第二 ...

  2. 洛谷P4360 [CEOI2004]锯木厂选址(斜率优化)

    传送门 我可能根本就没有学过斜率优化…… 我们设$dis[i]$表示第$i$棵树到山脚的距离,$sum[i]$表示$w$的前缀和,$tot$表示所有树运到山脚所需要的花费,$dp[i]$表示将第二个锯 ...

  3. 洛谷P4360 [CEOI2004]锯木厂选址(dp 斜率优化)

    题意 题目链接 Sol 枚举第二个球放的位置,用前缀和推一波之后发现可以斜率优化 // luogu-judger-enable-o2 #include<bits/stdc++.h> #de ...

  4. 洛谷4360[CEOI2004]锯木厂选址 (斜率优化+dp)

    qwq 我感觉这都已经不算是斜率优化\(dp\)了,感觉更像是qwq一个\(下凸壳优化\)转移递推式子. qwq 首先我们先定义几个数组 \(sw[i]\)表示\(w[i]\)的前缀和 \(val[i ...

  5. [CEOI2004]锯木厂选址 斜率优化DP

    斜率优化DP 先考虑朴素DP方程, f[i][k]代表第k个厂建在i棵树那里的最小代价,最后答案为f[n+1][3]; f[i][k]=min(f[j][k-1] + 把j+1~i的树都运到i的代价) ...

  6. P4360 [CEOI2004]锯木厂选址

    P4360 [CEOI2004]锯木厂选址 这™连dp都不是 \(f_i\)表示第二个锯木厂设在\(i\)的最小代价 枚举1号锯木厂 \(f_i=min_{0<=j<i}(\sum_{i= ...

  7. luogu P4360 [CEOI2004]锯木厂选址

    斜率优化dp板子题[迫真] 这里从下往上标记\(1-n\)号点 记\(a_i\)表示前缀\(i\)里面树木的总重量,\(l_i\)表示\(i\)到最下面的距离,\(s_i\)表示\(1\)到\(i-1 ...

  8. luoguP4360 [CEOI2004]锯木厂选址

    题目链接 luoguP4360 [CEOI2004]锯木厂选址 题解 dis:后缀和 sum:前缀和 补集转化,减去少走的,得到转移方程 dp[i] = min(tot - sumj * disj - ...

  9. 动态规划(斜率优化):[CEOI2004]锯木厂选址

    锯木场选址(CEOI2004) 从山顶上到山底下沿着一条直线种植了n棵老树.当地的政府决定把他们砍下来.为了不浪费任何一棵木材,树被砍倒后要运送到锯木厂. 木材只能按照一个方向运输:朝山下运.山脚下有 ...

  10. [BZOJ2684][CEOI2004]锯木厂选址

    BZOJ权限题! Description 从山顶上到山底下沿着一条直线种植了n棵老树.当地的政府决定把他们砍下来.为了不浪费任何一棵木材,树被砍倒后要运送到锯木厂. 木材只能按照一个方向运输:朝山下运 ...

随机推荐

  1. c99标准的restrict关键字

    参考自restrict restrict解释 restrict关键字出现于C99标准,wiki上的解释restrict from wiki. In the C programming language ...

  2. [Google] 看雪论坛: 安卓碎片化的情况

    2018年10月28日早间消息,谷歌方面发布了Android各版本的最新份额数据,截止到10月26日.即便是已经推出3个月了,Android 9 Pie系统的用户数仍旧没有超过0.1%,导致未出现在榜 ...

  3. jquery mobiscroll 滑动、滚动

    mobiscroll : 滑动选择 2.13.2版本免费,官网(mobiscroll.com)收费 先从官方下载2.13.2体验版下来,查看例子结合官方API学习( http://docs.mobis ...

  4. BZOJ 1799 同类分布(数位DP)

    给出a,b,求出[a,b]中各位数字之和能整除原数的数的个数.1<=a<=b<=1e18. 注意到各位数字之和最大是153.考虑枚举这个东西.那么需要统计的是[0,a-1]和[0,b ...

  5. OSPF协议介绍及配置 (上)

    OSPF协议介绍及配置 (上) 一.OSPF概述 回顾一下距离矢量路由协议的工作原理:运行距离矢量路由协议的路由器周期性的泛洪自己的路由表,通过路由的交互,每台路由器都从相邻的路由器学习到路由,并且加 ...

  6. Bond UVA - 11354(并查集按秩合并)

    题意: 给你一张无向图,然后有若干组询问,让你输出a->b的最小瓶颈路. 解析: 应该都想过用prime的次小生成树做..但二维数组开不了那么大..所以只能用kruskal了.... #incl ...

  7. BZOJ4197 [Noi2015]寿司晚宴 【状压dp】

    题目链接 BZOJ4197 题解 两个人选的数都互质,意味着两个人选择了没有交集的质因子集合 容易想到将两个人所选的质因子集合作为状态\(dp\) \(n\)以内质数很多,但容易发现\(\sqrt{n ...

  8. NOIP2015运输计划题解报告

    这题在洛谷上可以找到提交 P2680运输计划 题目背景 公元 2044 年,人类进入了宇宙纪元. 题目描述 L 国有 n 个星球,还有 n-1 条双向航道,每条航道建立在两个星球之间,这 n-1 条航 ...

  9. 链接错误 multiply defined (by misc_1.o and misc.o).

    http://www.stmcu.org/module/forum/thread-286128-1-1.html *** Using Compiler 'V5.06 (build 20)', fold ...

  10. Codeforces 717.F Heroes of Making Magic III

    F. Heroes of Making Magic III time limit per test 3 seconds memory limit per test 256 megabytes inpu ...