最近两年,我们见识了“百模大战”,领略到了大型语言模型(LLM)的风采,但它们也存在一个显著的缺陷:没有记忆。

在对话中,无法记住上下文的 LLM 常常会让用户感到困扰。本文探讨如何利用 LangChain,快速为 LLM 添加记忆能力,提升对话体验。

LangChain 是 LLM 应用开发领域的最大社区和最重要的框架。

1. LLM 固有缺陷,没有记忆

当前的 LLM 非常智能,在理解和生成自然语言方面表现优异,但是有一个显著的缺陷:没有记忆

LLM 的本质是基于统计和概率来生成文本,对于每次请求,它们都将上下文视为独立事件。这意味着当你与 LLM 进行对话时,它不会记住你之前说过的话,这就导致了 LLM 有时表现得不够智能。

这种“无记忆”属性使得 LLM 无法在长期对话中有效跟踪上下文,也无法积累历史信息。比如,当你在聊天过程中提到一个人名,后续再次提及该人时,LLM 可能会忘记你之前的描述。

本着发现问题解决问题的原则,既然没有记忆,那就给 LLM 装上记忆吧。

2. 记忆组件的原理

2.1. 没有记忆的烦恼

当我们与 LLM 聊天时,它们无法记住上下文信息,比如下图的示例:

2.2. 原理

如果将已有信息放入到 memory 中,每次跟 LLM 对话时,把已有的信息丢给 LLM,那么 LLM 就能够正确回答,见如下示例:

目前业内解决 LLM 记忆问题就是采用了类似上图的方案,即:将每次的对话记录再次丢入到 Prompt 里,这样 LLM 每次对话时,就拥有了之前的历史对话信息。

但如果每次对话,都需要自己手动将本次对话信息继续加入到history信息中,那未免太繁琐。有没有轻松一些的方式呢?有,LangChain!LangChain 对记忆组件做了高度封装,开箱即用。

2.3. 长期记忆和短期记忆

在解决 LLM 的记忆问题时,有两种记忆方案,长期记忆和短期记忆。

  • 短期记忆:基于内存的存储,容量有限,用于存储临时对话内容。
  • 长期记忆:基于硬盘或者外部数据库等方式,容量较大,用于存储需要持久的信息。

3. LangChain 让 LLM 记住上下文

LangChain 提供了灵活的内存组件工具来帮助开发者为 LLM 添加记忆能力。

3.1. 单独用 ConversationBufferMemory 做短期记忆

Langchain 提供了 ConversationBufferMemory 类,可以用来存储和管理对话。

ConversationBufferMemory 包含input变量和output变量,input代表人类输入,output代表 AI 输出。

每次往ConversationBufferMemory组件里存入对话信息时,都会存储到history的变量里。

3.2. 利用 MessagesPlaceholder 手动添加 history

from langchain.memory import ConversationBufferMemory

memory = ConversationBufferMemory(return_messages=True)
memory.load_memory_variables({}) memory.save_context({"input": "我的名字叫张三"}, {"output": "你好,张三"})
memory.load_memory_variables({}) memory.save_context({"input": "我是一名 IT 程序员"}, {"output": "好的,我知道了"})
memory.load_memory_variables({}) from langchain.prompts import ChatPromptTemplate
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder prompt = ChatPromptTemplate.from_messages(
[
("system", "你是一个乐于助人的助手。"),
MessagesPlaceholder(variable_name="history"),
("human", "{user_input}"),
]
)
chain = prompt | model user_input = "你知道我的名字吗?"
history = memory.load_memory_variables({})["history"] chain.invoke({"user_input": user_input, "history": history}) user_input = "中国最高的山是什么山?"
res = chain.invoke({"user_input": user_input, "history": history})
memory.save_context({"input": user_input}, {"output": res.content}) res = chain.invoke({"user_input": "我们聊得最后一个问题是什么?", "history": history})

执行结果如下:

3.3. 利用 ConversationChain 自动添加 history

我们利用 LangChain 的ConversationChain对话链,自动添加history的方式添加临时记忆,无需手动添加。一个实际上就是将一部分繁琐的小功能做了高度封装,这样多个链就可以组合形成易用的强大功能。这里的优势一下子就体现出来了:

from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder memory = ConversationBufferMemory(return_messages=True)
chain = ConversationChain(llm=model, memory=memory)
res = chain.invoke({"input": "你好,我的名字是张三,我是一名程序员。"})
res['response'] res = chain.invoke({"input":"南京是哪个省?"})
res['response'] res = chain.invoke({"input":"我告诉过你我的名字,是什么?,我的职业是什么?"})
res['response']

执行结果如下,可以看到利用ConversationChain对话链,可以让 LLM 快速拥有记忆:

3.4. 对话链结合 PromptTemplate 和 MessagesPlaceholder

在 Langchain 中,MessagesPlaceholder是一个占位符,用于在对话模板中动态插入上下文信息。它可以帮助我们灵活地管理对话内容,确保 LLM 能够使用最上下文来生成响应。

采用ConversationChain对话链结合PromptTemplateMessagesPlaceholder,几行代码就可以轻松让 LLM 拥有短时记忆。

prompt = ChatPromptTemplate.from_messages(
[
("system", "你是一个爱撒娇的女助手,喜欢用可爱的语气回答问题。"),
MessagesPlaceholder(variable_name="history"),
("human", "{input}"),
]
)
memory = ConversationBufferMemory(return_messages=True)
chain = ConversationChain(llm=model, memory=memory, prompt=prompt) res = chain.invoke({"input": "今天你好,我的名字是张三,我是你的老板"})
res['response'] res = chain.invoke({"input": "帮我安排一场今天晚上的高规格的晚饭"})
res['response'] res = chain.invoke({"input": "你还记得我叫什么名字吗?"})
res['response']

4. 使用长期记忆

短期记忆在会话关闭或者服务器重启后,就会丢失。如果想长期记住对话信息,只能采用长期记忆组件。

LangChain 支持多种长期记忆组件,比如ElasticsearchMongoDBRedis等,下面以Redis为例,演示如何使用长期记忆。

from langchain_community.chat_message_histories import RedisChatMessageHistory
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.runnables.history import RunnableWithMessageHistory
from langchain_openai import ChatOpenAI model = ChatOpenAI(
model="gpt-3.5-turbo",
openai_api_key="sk-xxxxxxxxxxxxxxxxxxx",
openai_api_base="https://api.aigc369.com/v1",
) prompt = ChatPromptTemplate.from_messages(
[
("system", "你是一个擅长{ability}的助手"),
MessagesPlaceholder(variable_name="history"),
("human", "{question}"),
]
) chain = prompt | model chain_with_history = RunnableWithMessageHistory(
chain,
# 使用redis存储聊天记录
lambda session_id: RedisChatMessageHistory(
session_id, url="redis://10.22.11.110:6379/3"
),
input_messages_key="question",
history_messages_key="history",
) # 每次调用都会保存聊天记录,需要有对应的session_id
chain_with_history.invoke(
{"ability": "物理", "question": "地球到月球的距离是多少?"},
config={"configurable": {"session_id": "baily_question"}},
) chain_with_history.invoke(
{"ability": "物理", "question": "地球到太阳的距离是多少?"},
config={"configurable": {"session_id": "baily_question"}},
) chain_with_history.invoke(
{"ability": "物理", "question": "地球到他俩之间谁更近"},
config={"configurable": {"session_id": "baily_question"}},
)

LLM 的回答如下,同时关闭 session 后,直接再次提问最后一个问题,LLM 仍然能给出正确答案。

只要configurable配置的session_id能对应上,LLM 就能给出正确答案。

然后,继续查看redis存储的数据,可以看到数据在 redis 中是以 list的数据结构存储的。

5. 总结

本文介绍了 LLM 缺乏记忆功能的固有缺陷,以及记忆组件的原理,还讨论了如何利用 LangChain 给 LLM 装上记忆组件,让 LLM 能够在对话中更好地保持上下文。希望对你有帮助!

======>>>>>> 关于我 <<<<<<======

本篇完结!欢迎点赞 关注 收藏!!!

原文链接:https://mp.weixin.qq.com/s/bWZsP5CXYxsO6dARd1LtFQ

LangChain让LLM带上记忆的更多相关文章

  1. 【HDU 4940】Destroy Transportation system(无源无汇带上下界可行流)

    Description Tom is a commander, his task is destroying his enemy’s transportation system. Let’s repr ...

  2. 记得ajax中要带上AntiForgeryToken防止CSRF攻击

    经常看到在项目中ajax post数据到服务器不加防伪标记,造成CSRF攻击 在Asp.net Mvc里加入防伪标记很简单在表单中加入Html.AntiForgeryToken()即可. Html.A ...

  3. ZOJ 2314 带上下界的可行流

    对于无源汇问题,方法有两种. 1 从边的角度来处理. 新建超级源汇, 对于每一条有下界的边,x->y, 建立有向边 超级源->y ,容量为x->y下界,建立有向边 x-> 超级 ...

  4. Excel等外部程序点击链接会带上IE信息的bug

    今天碰到一个问题,在Excel内点击链接到默认浏览器Chrome打开,奇怪的是服务端收到的Session一直对不上. 查了很久发现这个Excel到Chrome的跳转竟然带上了IE的Cookie 和 U ...

  5. 切记ajax中要带上AntiForgeryToken防止CSRF攻击

    在程序项目中经常看到ajax post数据到服务器没有加上防伪标记,导致CSRF被攻击,下面小编通过本篇文章给大家介绍ajax中要带上AntiForgeryToken防止CSRF攻击,感兴趣的朋友一起 ...

  6. echo json数据给ajax后, 需要加上exit,防止往下执行,带上其他数据,到时ajax失败

    01返回json数据给ajax后需要加上exit.返回json数据前不能有其他输出 function apply(){ if(IS_POST){$info['status'] = 1; echo js ...

  7. idhttp提交post带参数并带上cookie

    有这么一个提交连接 http://www.XXXXXX.com/test.php?p1=411328&p2=1&d1=HeroSkinList 一共有三个参数[p1]  [p2]  [ ...

  8. Django 如何让ajax的POST方法带上CSRF令牌

    问题 大家知道,在大前端领域,有一种叫做ajax的东东,即“Asynchronous Javascript And XML”(异步 JavaScript 和 XML),它被用来在不刷新页面的情况下,提 ...

  9. 利用DNSLOG获取看不到的信息(给盲注带上眼镜)

    一.前言 本文原创作者:sucppVK,本文属i春秋原创奖励计划,未经许可禁止转载! 毕业设计总算搞得差不多了,这个心累啊.这不,完成了学校的任务,赶紧回来给蛋总交作业.今天给大家分享一个姿势吧,不是 ...

  10. BZOJ2150 部落战争 【带上下界最小流】

    题目链接 BZOJ2150 题解 复习: 带上下界网络流两种写法: 不建\(T->S\)的\(INF\)的边,即不考虑源汇点,先求出此时超级源汇的最大流,即无源汇下最大的自我调整,再加入该边,求 ...

随机推荐

  1. 科普达人丨漫画图解什么是eRDMA?

    简介: 绕过CPU,将数据直接从一台计算机的内存传输到另一台计算机,进行网络加速 在一个领先的阿里云数据中心里,数百台服务器(也就是大型的计算机)在疯狂工作和通信,他们正在合力完成一个大型的大数据处理 ...

  2. EasyCV开源|开箱即用的视觉自监督+Transformer算法库

    ​简介:EasyCV是阿里巴巴开源的基于Pytorch,以自监督学习和Transformer技术为核心的 all-in-one 视觉算法建模工具.EasyCV在阿里巴巴集团内支撑了搜索.淘系.优酷.飞 ...

  3. MongoDB 5.0新特性概览

    ​简介: MongoDB 5.0标志着一个新的发布周期的到来,以更快地交付新特性给到用户.版本化API与在线重新分片相结合,使用户不必担心未来的数据库升级以及业务变化问题:本地原生时间序列数据平台也使 ...

  4. [CosmWasm] 安装 Rust 和 wasm32 (Linux & Mac)

      先用 rustup 安装 Rust 语言,再确保你拥有wasm32目标. $ rustup default stable $ cargo version # If this is lower th ...

  5. Microsoft.Maui.Graphics.Skia 使用 DrawString 绘制文本的坐标问题

    本文记录使用 Microsoft.Maui.Graphics.Skia 的 DrawString 进行绘制文本,不同的重载方法绘制的文本的坐标不同的问题 本文开始之前,预期已经准备好了环境和基础项目, ...

  6. dotnet C# 只创建对象不调用构造函数方法

    有时我期望只是创建出对象,但是不要调用对象的构造方法,可以通过使用 FormatterServices 的 GetUninitializedObject 函数来实现只创建对象不调用构造函数方法 这个 ...

  7. PostMan测试图片上传接口的方法

    一.选择POST后添加接口地址 二.选择Body下的from-data 注:Headers不要加参数 三.填写key,再key后的下拉选择file,然后选择文件 注:key并不是图片名称,而是接口接收 ...

  8. vue的pc端项目+element实现分页效果

    效果图: 直接使用element操作很简单,记录一下要点: 根据ele提供的api修改data v-for="(i,s) in dataView.slice((currentPage-1)* ...

  9. Wang Tile的Shader简易实现

    在使用大面积的平铺纹理时,会导致重复感较强的贴图呈现在画面中.我们可以通过许多方法进行优化,WangTile就是其中一种. WangTile(王浩瓷砖)方法通过对每条边标记颜色,并在平铺时将相同颜色的 ...

  10. Python:Python对象模型与序列迭代陷阱

    1. Python对象模型与浅拷贝/深拷贝 1.1 Python对象模型和引用 在我们讲解Python的序列修改陷阱之前,先巩固一下Python的对象模型和浅拷贝/深拷贝的知识. 众所周知,Pytho ...