P7959 [COCI2014-2015#6] WTF 题解

呃,是一道 DP

说实话,原题实际上是不要输出一种方法的……但是似乎放这道题的人想增加一点难度?

这里有两种做法,但都是 DP

预备观察

我们首先观察一些性质,以方便解题。

  • 循环不变:我们可以观察到,在 \(n\) 次变换后,序列会还原。也就是说,两个循环在同一个 \(i\) 上操作的序列是一样的。

  • 下标大小:其实可以看到,下标是一大一小,也就是 \(\min(ID_{i}, \mathit{ID}_{i+1})\) 和 \(\max(ID_{i}, ID_{i + 1})+1\)。意味着我们在 \(ID_{i}\) 的选择关于,且仅关于 \(ID_{i - 1}\) 的选择。所以考虑 DP 转移。

  • 连续性:不难发现,其实选择是这么一些边:\((ID_{i}, ID_{i + 1})\) 和 \((ID_{i + 1}, ID_{i + 2})\),也就是说每一个状态是相关联的。

接下来就可以开始正式解题了。

感觉上面讲的都是废话

解法1:强行DP

这也是我拿到这一道题的第一想法……也是正解的一种吧

在观察出来下标大小的关系之后,其实就可以设一个 \(DP\) 了。

令 \(f_{i,j}\) 表示在 \(ID_{i + 1}\) 选 \(j\) 所能取到的最大值。

于是可以有这么一个转移方程:

\[f_{i,j} = \max_{k=1}^{n-1}(f_{i-1,k} + A_{\min(j, k)} - A_{\max(j,k) + 1})
\]

\(k\) 上界为 \(n - 1\),这是题面中要求了的。

包括 \(j\) 其实也 \(\in [1, n-1]\)

所以就有一个 \(O(n^3)\) 的写法了。

但是很明显,必须优化到 \(O(n^2)\) 才能过。

我们把 \(\min \max\) 拆开:

\[\begin{aligned}
f_{i,j} = \max&( A_{j} + \max_{k = j}^{n - 1}(f_{i-1, k} - A_{k+1}), \\
&-A_{j+1} + \max_{k = 1}^{j}(f_{i-1,k} + A_{k}))
\end{aligned}
\]

其实内部关于 \(j\) 的边界并没有那么重要

很明显,后面两个部分可以通过前后缀 \(\max\) 搞定。于是我们可以在 \(O(1)\) 内转移。

总时间复杂度成功变为 \(O(n^2)\)。

不过还要注意一个点,每一次转移的时候,需要手动模拟一次 \(Rotate(n, r)\)。

那么核心代码如下:

pre[0] = suf[n] = -1e9;
for (i = 1; i <= n; ++i, rotate()) {
// prefix k
for (k = 1; k < n; ++k) {
// pre[k] = max(pre[k - 1], f[i - 1][k] + A[k]);
if (pre[k - 1] >= f[i - 1][k] + A[k]) {
pre[k] = pre[k - 1];
pref[k] = pref[k - 1];
} else {
pre[k] = f[i - 1][k] + A[k];
pref[k] = k;
}
} // suffix k
for (k = n - 1; k; --k) {
// suf[k] = max(suf[k + 1], f[i - 1][k] - A[k + 1]);
if (suf[k + 1] >= f[i - 1][k] - A[k + 1]) {
suf[k] = suf[k + 1];
suff[k] = suff[k + 1];
} else {
suf[k] = f[i - 1][k] - A[k + 1];
suff[k] = k;
}
} for (j = 1; j < n; ++j) { // enum cur ID[i + 1]
int p = pre[j] - A[j + 1], s = suf[j] + A[j];
if (p >= s) {
f[i][j] = p;
trans[i][j] = pref[j];
} else {
f[i][j] = s;
trans[i][j] = suff[j];
}
}
}

最后通过 trans 数组输出方案即可。

不过说实话,这个空间复杂度确实不够优秀。

做法2:std做法

其实可以发现,对于每一个 \(i\),设

\[id_1 = \min(ID_{i}, ID_{i + 1}), id_2 = \min(ID_{i}, ID_{i + 1})
\]

于是有 \(sum += A_{id_1} -A_{id_2 +1}\)。

这似乎提醒这我们做一个前缀差分。

于是我们设 \(b_{i} = A_{i + 1} - A_{i}\)。

所以可以得到 \(A_{id_2 + 1} - A_{id_1} = \sum_{i = id_1}^{id_2} b_{i}\)。

原本我们需要最大化,那么此时,我们需要最小化 \(A_{id_2 + 1} - A_{id_1}\)。

不过,如果我们把初始的 \(A\) 序列全部取反,那么我们还是需要最大化上面这个式子。

贴出的代码中也做了如上操作。

注意加减顺序。以及 \(b\) 只有 \(n-1\) 个元素。

于是我们可以构建出一个 \((n-1) \times n\) 的矩阵 \(B\),其中每一行是对应旋转后的 \(A\) 的差分序列。

我们在寻找 \(sum\) 的过程,其实就是把所有路径上的 \(b\) 加起来,于是,问题转化为寻找在 \(B\) 上的一条最短路径。

不过,由于我们只能向下,或者左右走,并且不能重复走,所以也考虑 \(DP\)。

设 \(f_{i, j, k}\) 表示,走到 \((i, j)\) 这个位置,来的方向是 \(k\) ,的最长路径。

\(k \in [0, 3)\),分别表示从上面转移,从右侧转移,从左侧转移。

或者可以说是向下走,向右走,向左走转移(代码中的意义)。

于是有如下方程:

\[\begin{aligned}
f_{i, j, 0} &= \max(f_{i-1, j, 0/1/2}) + B_{i,j} \\
f_{i, j, 1} &= \max(f_{i, j+1, 0/1}) + B_{i, j} \\
f_{i, j, 2} &= \max(f_{i, j-1, 0/2}) + B_{i, j}
\end{aligned}
\]

记录一下转移来的路径,在拐点的地方输出即可。

为了偷懒,就直接贴出不记录路径的代码了。

总时间复杂度 \(O(n^2)\):

#include <iostream>
#include <algorithm> using namespace std;
const int N = 3003, MINUS_INF = -1e9; int a[N][N];
int b[N][N];
int dp[N][N][3]; #define DOWN 0
#define LEFT 1
#define RIGHT 2 // 三个方向选其优
int best(int i, int j) {
return max(dp[i][j][DOWN],
max(dp[i][j][LEFT], dp[i][j][RIGHT]));
} int main () {
int n, r;
cin >> n >> r; // 注意整个程序的下标是从 0 开始
// 也就是 [0, n) 而非 [1, n]
for (int i = 0; i < n; ++i) {
cin >> a[0][i];
a[0][i] *= -1;
int position = i;
// 构建旋转后的序列
for (int j = 1; j < n; ++j) {
position = (position + r) % n;
a[j][position] = a[0][i];
}
} // 初始化dp表
for (int i = 0; i < n; ++i)
for (int j = 0; j < n - 1; ++j) {
// 构建差分序列
b[i][j] = a[i][j + 1] - a[i][j]; for (int k = 0; k < 3; ++k)
dp[i][j][k] = MINUS_INF;
} for (int i = 0; i < n; ++i) {
for (int j = 0; j < n - 1; ++j) {
// 处理从上一行的转移
dp[i][j][DOWN] = b[i][j] + (i > 0 ? best(i - 1, j) : 0); // 处理从左边转移
if (j > 0)
dp[i][j][RIGHT] = b[i][j] +
max(dp[i][j - 1][DOWN], dp[i][j - 1][RIGHT]);
} // 反着来一次从右边的转移
for (int j = n - 3; j >= 0; --j)
dp[i][j][LEFT] = b[i][j] +
max(dp[i][j + 1][DOWN], dp[i][j + 1][LEFT]);
} // 输出最终的答案
int sol = MINUS_INF;
for (int j = 0; j < n - 1; ++j)
sol = max(sol, best(n - 1, j));
cout << sol << endl;
}

P7959 [COCI2014-2015#6] WTF 题解的更多相关文章

  1. COCI2014/2015 Contest#1 D MAFIJA【基环树最大独立点集】

    T1725 天黑请闭眼 Online Judge:COCI2014/2015 Contest#1 D MAFIJA(原题) Label:基环树,断环+树形Dp,贪心+拓扑 题目描述 最近天黑请闭眼在 ...

  2. SCOI 2015 Day2 简要题解

    「SCOI2015」小凸玩密室 题意 小凸和小方相约玩密室逃脱,这个密室是一棵有 $ n $ 个节点的完全二叉树,每个节点有一个灯泡.点亮所有灯泡即可逃出密室.每个灯泡有个权值 $ A_i $,每条边 ...

  3. SCOI 2015 Day1 简要题解

    「SCOI2015」小凸玩矩阵 题意 一个 \(N \times M\)( $ N \leq M $ )的矩阵 $ A $,要求小凸从其中选出 $ N $ 个数,其中任意两个数字不能在同一行或同一列, ...

  4. 2018-2-6考试(COCI2014/2015 Contest#5)

    T1:FUNGHI(1s,32M,50pts)得分:50 题意:给你8个数组成一个环,要你求出其中连续的4个数,让它们的和最大 题解:暴力求出每一连续4个数之和,比较一下就好 标签:模拟 C++ Co ...

  5. Boston Key Party 2015 Heath Street 题解(Writeup)

    Heath Street是Boston Key Party 2015的一道数字取证题目,我们得到了一个叫做“secretArchive.6303dd5dbddb15ca9c4307d0291f77f4 ...

  6. CHD 2015迎新杯题解

    A.预防流感的拉面女神 简析:计算 n 的二进制表示里面 1 的个数 #include <cstdio> #include <cstring> #include <alg ...

  7. BZOJ4104:[Thu Summer Camp 2015]解密运算——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4104 对于一个长度为N的字符串,我们在字符串的末尾添加一个特殊的字符".".之 ...

  8. C++算法代码——求数列[coci2014/2015 contest #1]

    题目来自:http://218.5.5.242:9018/JudgeOnline/problem.php?id=1815 题目描述 Mirko在数学课上以一种有趣的方式操作数列,首先,他写下一个数列A ...

  9. [Bzoj3743][Coci2015] Kamp【换根Dp】

    Online Judge:Bzoj3743 Label:换根Dp,维护最长/次长链 题目描述 一颗树n个点,n-1条边,经过每条边都要花费一定的时间,任意两个点都是联通的. 有K个人(分布在K个不同的 ...

  10. BZOJ4085: [Sdoi2015]音质检测

    BZOJ4085: [Sdoi2015]音质检测 由于这题太毒了,导致可能会被某些人卡评测,于是成了一道权限题... 本蒟蒻表示没钱氪金... 但是可以去洛谷/Vijos搞搞事... 但是洛谷上只能评 ...

随机推荐

  1. 力扣357(java)-统计各位数字都不同的数字个数(中等)

    题目: 给你一个整数 n ,统计并返回各位数字都不同的数字 x 的个数,其中 0 <= x < 10n . 示例 1: 输入:n = 2输出:91解释:答案应为除去 11.22.33.44 ...

  2. “让专业的人做专业的事”,畅捷通与阿里云的云原生故事 | 云原生 Talk

    简介: 如何借助阿里云强大的 IaaS 和 PaaS 能力去构建新一代的 SaaS 企业应用,从而给客户提供更好.更强的服务,这是畅捷通一直在思考和实践的方向.最终,畅捷通选定阿里云企业级分布式应用服 ...

  3. 使用 Arthas 排查 SpringBoot 诡异耗时的 Bug

    简介: 公司有个渠道系统,专门对接三方渠道使用,没有什么业务逻辑,主要是转换报文和参数校验之类的工作,起着一个承上启下的作用.最近,在优化接口的响应时间,优化了代码之后,但是时间还是达不到要求:有一个 ...

  4. [ML] Tensorflow2 保存完整模型以及使用 HDF5

    将模型保存为完整的 HDF5 文件,后面可以直接加载使用: # cnblogs.com/farwish import tenforflow as tf model = tf.keras.models. ...

  5. dotnet 理解 IConfigurationProvider 的 GetChildKeys 方法用途

    我最近遇到了一个有趣的 Bug 让我调试了半天,这个 Bug 的现象是我的好多个模块都因为读取不到配置信息而炸掉,开始我没有定位到具体的问题,以为是我的配置服务器挂掉了.经过了半天的调试,才找到了是我 ...

  6. 和 ChatGPT 聊聊 .NET 编译和执行背后的那些事儿

    1 .NET 编译.构建.执行涉及到哪些概念 在 .NET 编译.构建和执行中,涉及到以下概念: C# 或 Visual Basic .NET 等编程语言: 这些是 .NET Framework 使用 ...

  7. SpringBoot使用JSch操作Linux

    推荐使用Hutool的Jsch工具包(它用的连接池的技术) 一.SSH远程连接服务器 SSH更多见:http://t.csdnimg.cn/PrsNv 推荐连接工具:FinalShell.Xshell ...

  8. 使用openvp*-gui客户端连接多服务端,作为Windows服务部署

    背景 多数公司都会用到VPN隧道技术链接服务器,保证服务器的安全,但多数情况下会存在多服务端的情况,这时就有客户端连接多个服务端的必要了,如果每次都要切换配置的话,对于有强迫症的兄弟当然忍不了了 思考 ...

  9. 题解:CF1941G Rudolf and Subway

    原题链接 简化题意 一个无向连通图中将边分成了不同颜色(保证同种颜色联通),问从 \(b\) 到 \(e\) 最短需要经过几种颜色 思路 考虑因为同种颜色联通,可直接在读入的时候开两个 vector ...

  10. 圈子社交系统--在线了解前后端,APP小程序H5,三端源码交付-多重玩法,新奇有趣。

    圈子论坛社区系统,含完整的后台PHP系统.功能:小程序授权登陆,H5和APP,手机号登陆,发帖,建圈子.发活动.圈主可置顶推荐帖子,关注.点赞.评论.交流等.可作为圈子贴吧等自媒体. 一款全开源支持免 ...